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Introduction

High-density oligonucleotide microarrays such as those 
provided by Affymetrix allow genome-wide quantitative 

analysis of gene expression, genetic variations, and regulatory 
factor binding sites using the ChIP-chip method [1,2]. A key 
issue in such microarray technology using short oligonucleotide 
probes is how to remove the effect of the false signal due to 
non-specific binding (NSB) between probe on the arrays and 
fluorescent labeled targets, which is inevitable when a complex 
mixture of DNA/RNA fragments is hybridized to millions of 
probes simultaneously. Thus, the development and the evalua-
tion of algorithms to predict the amount of NSB are important 
topics for the improvement of microarray analysis. 

In this study, we sought to develop a thermodynamic model 
of NSB on short nucleotide microarrays. In the model, we 
assumed that NSB caused by a complex mixture of DNA/RNA 
fragments can be approximated by hybridization of the probes 
and multiple hypothetical targets, which reflect major compo-
nents of the mixture. We also assumed the binding affinities of 
these hypothetical targets to the probes can be estimated by the 
nearest neighbor model [3] from the sequence of each probe. 
In the original nearest neighbor model, the model param-
eters depends on permutation of every adjacent base pairs, we 
extended it to consider permutation of every adjacent n-base 
pairs. We fitted the observed signal intensities of NSB with 
those expected by the model to obtain the model parameters 
as representing the concentrations of the hypothetical targets 
and the binding affinities. As a result, we found that our model 
improved the accuracy of prediction of NSB intensities com-
pared with previously proposed approaches.

A thermodynamic model for the non-specific hybridization signals
To estimate the NSB signal we used the data of “background 

probes” on Affymetrix’s Exon Arrays, for which it is expected 
that there is no significant gene-specific signal caused by exact-
ly matched targets, so the observed signal intensities of the 
background probes mostly originate from NSB [4]. Thus, by 
analyzing how the signal intensities of the background probes 
depend on their probe sequences, it is expected that we can 
estimate how the NSB signal contributes to signal intensities 
of all probes.

In this study, we introduce a multi-source non-specific 
hybridization (MSNS) model to estimate the NSB signal inten-
sity of background probes. The schematic representation of 
this model is shown in Fig.1. In this approach, we assume that 
the non-specific signals of background probes can be repre-

sented by a thermodynamic equilibrium model of the bindings 
between probes and multiple hypothetical targets, based on the 
following reactions:

where Pi
free and Tj

free are free i-th probes and j-th hypotheti-
cal targets, and PiTj is their duplex, Kij is equilibrium constant 
between them and m is the number of hypothetical targets. Here 
we assume the following points; i) the equilibrium the system, 
ii) mass conservation of probe and target molecules, and iii) the 
number of target molecules is enough larger than the number 
of probe molecules. From these assumptions, we obtain that 
the intensity of non-specific hybridization of the i-th probe is 
represented as follows:

where Ii
NS is the non-specific signal intensity of the i-th probe, 

C is the scale of intensity and Ibg is the optical background 
intensity. For the equilibrium constant Kij, we assume that the 
free energy of hybridization between probe and hypothetical 
non-specific targets is calculated using the n-nearest neighbor 
model, which is an expansion of the nearest neighbor model 
[3] to include the effect of n-neighboring nucleotides for the 
calculation. We also consider the equilibrium of the probes 
between the folded and unfolded states, where the equilibrium 
constant of folding/unfolding of probes are calculated by an 
algorithm named UNAfold [5]. In the MSNS model, there are 
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Fig. 1 Schematic 
representation of the 
multi-source non-
specific hybridiza-
tion (MSNS) model
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m×4n+m−n+28 parameters that are adjusted to fit the model 
of the observed background intensities: m×4n parameters for 
the n-nearest neighbor parameter for each hypothetical target; 
m parameters for the concentration of m hypothetical targets; 
26−n for the position dependence of the weight factors on the 
probes; one parameter for the optical background constant; and 
one for the weight factor representing the coefficient for probe 
folding. We optimized these model parameters by minimizing 
the mean residual error between observed and expected probe 
intensity in the background probes.

Evaluating estimates of the non-specific hybridization signals
To evaluate the MSNS model for the estimation of the NSB 

signal, we fitted the observed non-specific signal intensities in 
the training probe set with those expected by the models by 
tuning the parameters in the models. Then, we evaluated the 
accuracy of the estimate. In Fig.2, we show the scatter plots of 
estimated and observed signal intensities of the testing probe set 
which were not used for the parameter fitting. In the figure, the 
estimations of two previous methods are also presented. One 
is Affymetrix’s GC composition based background correction 
(PM-GCBG) method [4], in which the NSB signal intensity of a 
given PM probe is estimated as the median of signal intensities 
of background probes having the same GC-content. Another is 
the model-based analysis of tiling arrays (MAT) method [6], in 
which a simple linear model is used for the NSB estimation. 
As clearly shown in Fig.2, the PM-GCBG and MAT methods 
showed inconsistency in the region of large background signals 
(i.e. observed intensities larger than 500) and relatively low R2 

value, while the MSNS model succeeded in estimating such 
large background signals and resulted high R2 value (R2~0.8). 
One reason for the difference in the estimation of large back-

ground signals is the use of the n-nearest neighbor model to 
calculate the hybridization free energy. The parameters in the 
n-nearest neighbor model indicated that contiguous sequences 
of cytosine(C) in a probe, such as ‘CCCC’ and ‘CGCCC’, are 
more effective in increasing the amount of nonspecific hybridi-
zation than non-contiguous sequences of C, even among probes 
having the same GC content. Since such effects of contiguous 
sequences in a probe cannot be represented in the previous 
models, these models failed to predict the large signal intensity 
caused by NSB. Also, the results indicate that the inclusion 
of multiple hypothetical targets is effective for the accurate 
prediction of the amount of NSB. Since the MSNS model used 
a large number of fitting parameters for the estimation (e.g., 
1052 fitting parameters are used in the case of , m=4 , n=4), 
we checked the possibility of over-parameterization by using 
Akaike information criterion (AIC) and Bayesian information 
criterion (BIC). As results, the analysis using AIC and BIC sug-
gested that the models with m≈4 and n≈4 are appropriate for 
the non-specific estimation under this condition. 

Conclusion
One significant feature of microarray technology is that we can 

prepare a huge number of probes, and thus can use huge amounts 
of signal intensity data for analyses. Such a huge amount of data 
makes it possible to evaluate hybridization models with large 
numbers of fitting parameters. In this study, we evaluated the 
model-based approach for the estimation of non-specific hybridi-
zation. We expanded the hybridization model to represent the 
NSB between probes and a complex mixture of oligonucleotide 
fragments by introducing multiple hypothetical targets and the 
n-nearest neighbor model for the estimation of binding affini-
ties. Even though the number of fitting parameters in the model 
becomes larger, we found that the accuracy of predicting the NSB 
signal intensities increases significantly. Our studies showed that 
the inclusion of 104~105 background probes, for which no signal 
caused by specific binding is expected, provides accurate predic-
tion of the NSB signal, with R2~0.8. We believe that the accurate 
background correction with such a small number of background 
probes can be a key algorithm for future microarray analysis.
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Fig. 2 The relationship between the expected and observed signal intensities 
of the testing probes. The R2 values for each estimation are also presented. 
The solid line indicates y=x, while the dashed lines show y=3×x and y=1/3×x, 
respectively. The numbers of fitting parameters are 25 for (a), 80 for (b), 43 for 
(c), and 1052 for (d), respectively. In the case of the MSNS model with m=4, 
n=4, 99% of probes in the testing dataset were within 3-fold differences, and 
96% were within 2-fold differences.


