Pursuing truth, creating harmonious diversity

From 'Tekijuku' to a 'World Tekijuku' – shining forth into the 22nd century

Osaka University, with its 176-year history as a place of scholarship, was born from ‘Tekijuku,’ a private academy established in 1838 by Ogata Koan, the father of Dutch studies in Japan. It was established as a comprehensive university in 1931, the sixth Imperial University in Japan. Nagaoka Hantaro, the first president of Osaka Imperial University, is a well-known physicist whose motto was: “Always be creative. Find your own path.” Today, Osaka University continues to be guided by the spirit of this motto, along with that of Ogata Koan: “For people, for society and for pursuit of truth.” In the days of Koan’s Tekijuku, people from all over Japan came together to build a new era in Japan through the universal language of scholarship. Now, in 2014, Osaka University will initiate its mission to create a ‘World Tekijuku,’ in which scholars from all over the world will come together to learn, develop, and play vital roles in the world.

The world is currently facing a wide range of issues and crises, including global-scale problems with complex causes such as explosive population growth, food shortages, energy issues, environmental destruction, and infectious diseases. There is no magical solution to these problems, but I am of the opinion that the tougher the dilemma, the greater the need to go ‘back to basics’. Now, more than ever, it is vital that we seriously question the fundamental nature of these matters. Universities are places where we can discover ways to resolve these issues through the pursuit of truth in scholarship.

The development and social well being of humanity depends upon the diversification of race, language, culture, and religion. However, in a global society, there may be times when this causes conflict. The common language of ‘scholarship’ can overcome such barriers through a variety of social interactions and exchanges. I believe that the role of the university, and of the ‘World Tekijuku’ we are pursuing at Osaka University, is to facilitate and create harmonious diversity through scholarship. This role will become increasingly important in the 21st century. By the time we celebrate the University’s centenary in 2031, we aspire to be a world-leading, top tier, comprehensive research-oriented university. As a ‘World Tekijuku,’ we wish to play a pivotal role in creating harmonious diversity, shining forth even into the 22nd century.

This prospectus introduces the variety of world-leading, state-of-the-art research being carried out at Osaka University. I hope that, as a response to this prospectus, people from around the world will have an interest in the University. Here, I hope to have students who are full of ambition, who become globally active researchers to uncover and discover the true nature of how things work, and who play pivotal roles on the global stage.

With over 1800 years of history, Osaka is a modern, friendly and charming city, located in the center of Japan and surrounded by Kyoto, Nara and Kobe, Osaka is a place where you can make your dreams come true. We are looking forward to creating harmonious diversity, together with you, for the welfare of human kind.
The origin of Osaka University dates back to Tekijuku in 1838 founded by OGATA Koan. However, the spirit of the University can be traced back even further to Kaitokudo founded in 1724. This trait is inherent in today's Osaka University which continues to achieve cutting-edge research results worthy of great pride and international recognition and to provide society with distinguished researchers and professionals.
Science related to infectious diseases and the immune system is now mainstream in life sciences at Osaka University. The tradition dates back to 1838 when Tekijuku, a private school of European medical sciences, was established by OGATA Koan in central Osaka. Osaka was the economic center of Japan, bustling with innovative, culturally and spiritually minded people. OGATA Koan, a distinguished physician and a pioneer of modern medical sciences in feudal Japan, taught more than 1,000 young students from all over the country between 1838 and 1862 at Tekijuku (Photos 1 & 2). It is well known that many of the students that had studied at Tekijuku played important roles in the modernization of the Japanese society in the second half of the nineteenth century.

As a physician versed in European medical sciences, OGATA Koan’s major targets were life-threatening infectious diseases of that era, such as smallpox and cholera. Countless people, including several emperors and Tokugawa shoguns, suffered from the endemic smallpox while cholera invaded and swept through western Japan from 1858 during the third pandemic. However, through Dutch medical books, Ogata learnt that a safe and effective vaccine against smallpox had been invented in Europe. The vaccine, live cowpox virus, finally arrived in Japan after several transportation failures and Ogata took affirmative action, with the financial support of Osaka merchant YAMATOYA Kahei, to establish a system of mass vaccination while securely maintaining the live vaccine. Jotokan, the vaccination clinic Ogata established near Tekijuku in 1849, was a hub of smallvaccination facilities operated by local physicians in and around Osaka, some of who had studied at Tekijuku (Photo 3). During the cholera crisis in 1858, Ogata quickly compiled and distributed a booklet titled 'Kolorichijun' (Photo 4) to physicians in Osaka in order to disseminate as a possible entry point for these serious infectious agents. In 1934, the first Research Institute at Osaka University, the Research Institute for Microbial Diseases, was established with donations from Osaka merchant, YAMAGUCHI Gendou. In the research institute and in a number of basic and clinical departments within the medical school, infectious diseases such as tuberculosis were targets of highly active research. Some of the research results at the University were translated into vaccines by an incorporated foundation, the Research Foundation for Microbial Diseases, Osaka University, which was also established through the generosity of YAMAGUCHI Gendou.

The advancement of science related to infectious diseases at Osaka University generated a new trend of research on the body’s immune system and immunology became a prominent feature of the University’s life sciences. As you will read in the following section, Osaka University now boasts the Immunology Frontier Research Center supported by the WPI (World Premier International Initiative) program of the Ministry of Education, Culture, Sports, Science and Technology. The Immunology Frontier Research Center and the Research Institute for Microbial Diseases are located in close proximity culminating in a large research complex aimed at controlling infectious and immune diseases (Photo 5).

(Taroh KINOSHITA, Professor, Immunology Frontier Research Center)
The Word ‘Osaka’
The geographical range currently indicated by the term ‘Osaka’ varies according to the context in which the term is used. The Tokugawa shogun that ruled Japan during the Edo period (1603—1867) clearly referred to Osaka as the administrative district that the Edo government had set under the direct control of the city. The administrative district was dominated by Osaka shogunate magistrates, set apart from the surrounding rural areas and was much smaller than present day Osaka. Nowadays, Umeda and Namba are densely populated areas located in downtown Osaka but during the Edo period neither Umeda nor Namba was included within Osaka itself rather considered rural land adjacent to it on both sides. To put it simply, Osaka in the Edo period was considered an area sandwiched in between; it was this area that was exclusively referred to as Osaka. Osaka began expanding its borders from 1868 onwards, the start of the Meiji era.

Osaka in the Edo Period
Toyotomi Hideyoshi (1537—1598) finally put an end to civil war, which had lasted more than a century in Japan. He achieved unification in 1590 and this laid the foundations for the development of Osaka. As well as the construction of Osaka Castle, Hideyoshi attracted merchants and traders through urban development. After unification throughout Japan, the House of Lords was built in Osaka and it was decided that all lords should pay homage to Hideyoshi. Osaka subsequently thrived and became the political, economic and military center of Japan.

Toyotomi Hideyori (1593—1615) followed in his father’s footsteps and became the head of Osaka Castle after Hideyoshi’s death in 1598. In 1615, however, Hideyori would be overthrown by the first shogun Tokugawa Ieyasu (1542—1616) who had a firm grip on hegemony after winning the battle of Sekigahara in 1600 and the opening of the shogunate in Edo (modern day Tokyo) in 1603. As a result of this war, Osaka was destroyed and areas burnt to the ground.

Following this, post-war reconstruction was carried out and Osaka fell under the direct control of the Edo shogunate from 1619. In addition to the rebuilding of Osaka Castle, the shogunate focused on urban development and the area prospered greatly during the Edo period. In the 18th century, it was a huge city with a population of 400,000 second only to Edo where the shogunate was located. Osaka became a distribution center furnishing goods and supplies to the rest of Japan. Rice instead of land tax was collected from each of the lords’ village territories along with other special products and sent to Osaka to be sold. To this end, the lords placed their goods in their own warehouse-residences in the city called ‘kurayashiki’.

Land Characteristics
Osaka in the Edo period comprised of Osaka Castle, Osaka shogunate magistrates, shogunate institutions and the kurayashiki, which were owned by the various different feudal lords. There was a presence of samurai in Osaka but their percentage compared to the total population of Osaka was negligible and most of the townspeople were actually engaged in commerce and industry. Due to the huge political shogunate organization in Edo, there was always a constant number of samurai present there. The ‘sankin-kotai’ system (lit. ‘alternate attendance’, a daimyo’s alternate-year residence in Edo) meant there was also an influx of samurai to the area at this time and this became a major difference between the two regions. Furthermore, since Osaka had become the center of the national economy, the local merchants were able to influence the trend of prices and distribution nationwide.

These characteristics brought a sense of freedom to Osaka, a free spirit that did not fear the authority of officers or samurai. In addition, many private schools were opened and scholarship developed tremendously, but the ethos of this Osaka was also clearly reflected in its academic content. ‘Kaitokudo’ founded in Osaka thanks to the contributions of leading merchants in 1724, together with ‘Tekiiku’, are said to be the origins of Osaka University. Nakai Chikuzan (1730—1804), the principal of Kaitokudo, severely criticizes the samurai who displayed no signs of shame with regard to not repaying this debt owed to the merchants.

Once we leave the Edo period and enter the world of the Meiji era, any indication of the existence of samurai and chonin (merchants and traders) disappears. As mentioned earlier, at this time, the geographic region of Osaka itself expands. Nonetheless, even with era change, the ethos of Osaka nurtured during the Edo period is present and, in fact, still lives on today.

(Michihito MURATA, Professor, Graduate School of Letters)
Currently, Osaka is known as one of the international hubs for immunology. The following four scientists are not to be forgotten when talking about immunology research in Osaka University. Tadamitsu Kishimoto (Osaka University President, 1997-2003) and Toshio Hirano (Osaka University President, 2011-present) studied at the laboratory of Yuichi Yamamura (Osaka University President, 1979-1985), a pioneer in microbiology and cancer immunology in Japan. Interleukin-6 (IL-6), discovered at Kishimoto’s lab in 1986 has become a fascinating research subject around the world, because it plays important roles in pathogenesis and aggravation of various autoimmune diseases such as rheumatoid arthritis or juvenile arthritis. Due to their remarkable achievements in IL-6-based immunology and therapeutic application, Kishimoto and Hirano won the Crafoord Prize in Polyarthritis (2009) and the Japan International Prize (2011).

Shizuo Akira has made ground-breaking discoveries in the field of innate host defense mechanisms, and was chosen as the “Hottest Researcher in the World” by Thomson Reuters for the years of 2006-2007. He is a recipient of the Robert Koch Prize (2004), the William Coley Award (2006), and the Gairdner International Award (2011).

Shimon Sakaguchi identified regulatory T cells (Treg) as the “immune cells that suppress immune reactions”. Sakaguchi has greatly contributed to the understanding of Treg and its roles in controlling a variety of physiological and pathological immune responses, including autoimmune disease, transplantation tolerance, and tumor immunity. Sakaguchi is also a recipient of the William Coley Award (2004).

The above three scientists Kishimoto, Akira and Sakaguchi have been elected as foreign associates of the National Academy of Sciences. Partly through their achievements, Osaka University was ranked among the world’s top institutes for the “Citations per Paper ranking” in the immunology field (Essential Science IndicatorsTM; amongst institutes that produced more than 500 papers between 2003 and 2013).

Immunology Frontier Research Center (IFReC)

The Immunology Frontier Research Center (IFReC) at Osaka University, directed by Shizuo Akira, was established in 2007 with the aforementioned four immunologists at the core. IFReC was selected by the Japanese government as one of the nation’s five exclusive World Premier International (WPI) Research Centers. The five WPI institutes have recorded an average of 5.1% for the “Productivity of top 1% papers”*, of which IFReC recorded 11.2%, the best score in all the fields of research (Web of Science 2007-2010).

As well as the four mentioned above, there are diverse researchers enrolled at IFReC. They are studying a wide variety of research fields besides autoimmune diseases including malaria infection, osteoporosis, metabolic syndrome etcetera, incorporating the latest technologies such as Laser microscopes, MRI, and computer simulation for their studies.

IFReC is expected to grow into a new leading institute of immunology and biosciences in Japan.

*Productivity of top 1% paper (Thomson Reuters, Web of Science): #of Top 1% Paper in the entity / #of Total Paper in the entity

Immunology at Osaka University and Four Immunologists

Shizuo Akira at the ceremony for the Canada Gairdner International Award 2011

The scientific aim of IFReC is to contribute to a more comprehensive understanding of the dynamics of the immune system by employing not only traditional immunology experiments, but also a variety of imaging and bioinformatics technologies. This will lead to new and more efficient development strategies for vaccines and immune therapies when combating infectious diseases, cancers and autoimmune diseases.

IFReC Immunology Frontier Research Center (IFReC)

Outstanding Achievements and Programs
Developments in particle physics and Osaka University

Takahiro KUBOTA and Kazunori HANAGAKI
Professor
Graduate School of Science
www.sci.osaka-u.ac.jp/

Yukawa’s Meson Theory

Takatoshi Yanagida
Professor
Graduate School of Science

The discovery of the Higgs Particle

Exciting news came from CERN (European Organization for Nuclear Research) in Geneva on 4 July in 2012, that they have after all discovered Higgs-like particle, the long-sought fundamental particle explaining the origin of mass of all particles. This discovery is due to international collaboration involving several dozens of countries, among which Japan has been apparently one of the major driving forces of this world-wide project. Experimental particle physicists in Department of Physics at Osaka University have also been playing key roles in the course of painstaking construction of this experimental apparatus and of nerve-breaking data analyses.

The Nobel Prize in 2013

The ATLAS group, in which our Osaka members are included, has gone further to determine the spin and parity properties of the new particle. It has been expected theoretically that the Higgs boson has the spin 0 and parity +, whose confirmation is absolutely necessary for the new particle to be the Higgs boson. The alternative possibilities other than spin 0 and parity + have been all excluded at confidence levels above 97.8 per cent by the time of writing this article. We are thus quite convinced that the newly discovered particle is endowed with many of the properties that the Higgs boson must have. We are all sure that the year 2012 will be remembered as the year of Higgs boson discovery, and that our all-out efforts underly the Nobel Prize in Physics in 2013. The experimental group members in Osaka University who have been participating in this success story are all full of joy and happiness.

The Gauge Principle

The unified theory of electromagnetic and weak forces together with quantum chromodynamics for the strong force is now called standard model, in which the key idea is the ‘non-abelian gauge symmetry’. A special type of this symmetry was formulated mathematically in 1954 by C.N. Yang and R.L. Mills. It was, however, Ryoyo Utiyama, Professor at Osaka University who developed the gauge symmetry to its full generality including gravity. In his 1956 paper, Utiyama has heightened the gauge symmetry to the guiding principle of, and has paved the way for exploration of the present-day gauge theories of elementary particles.

Spontaneous Symmetry Breaking

Another important ingredient in constructing the standard model is the concept of spontaneous symmetry breaking, which was introduced in particle physics in 1961 by Professor Yoichiro Nambu (Nobel laureate) of Chicago University. He has been a frequent visitor to Osaka since 1960’s and has been given special title of Distinguished Professor at Osaka University. The spontaneous symmetry breaking, when combined with gauge symmetry, is bound to predict the existence of a neutral spin 0 particle, named Higgs boson. In spite of dedicated efforts of experimental physicists, the Higgs boson had eluded all the experiments until 4 July , 2012.

LHC Experiment

The experimental apparatus that was constructed at CERN and connected with the discovery of the Higgs-like particle is called LHC (Large Hadron Collider). There are two experimental groups, ATLAS and CMS, and the members of Osaka University belong to the former. The ATLAS strategy towards the milestone of Higgs discovery was to focus on the decay modes of the Higgs boson to two photons (γγ), to two Z bosons and to two W bosons. The two Z bosons decay further into four leptons (electrons and/or muons). The datasets used in the analyses were collected at the center of mass energy of 7 TeV in 2011 and of 8 TeV in 2012. Figure 1 shows the data of γγ decay and Figure 2 the decay into four leptons through two Z bosons. These figures show a clear evidence for the production of a neutral boson with a mass of 125 GeV.

Nagaoka Model for an Atom

The Department of Physics in Osaka boasts many luminous figures at each stage of development in physics, leading eventually to the discovery of the Higgs-like particle. Hantarō Nagaoka, the first president of Osaka University, is known to have advocated in 1903 a Saturnian model for an atom, i.e., electrons are moving in one or more rings around a central body i.e., nucleus, just like the rings of the Saturn. Nagaoka’s proposal was confirmed several years later by the celebrated experiment of Rutherford scattering. The Saturnian model has been known widely in the West through a popular science book ‘La Valeur de la Science’ (1905) written by renowned scientist, H. Poincare.

Yukawa’s Meson Theory

While Nagaoka has opened the door to the atomic world, mysteries hidden in nucleus were uncovered in 1935 by a bold idea of then a 28-year old lecturer at Osaka University, Hideki Yukawa. It has been by no well established that there are four kinds of forces in nature: gravitational, electromagnetic, strong and weak forces. The concept of strong force that explains the binding of neutrons and protons in nucleus was introduced for the first time by Yukawa. He is known to have predicted the existence of a new particle as a mediator of the nuclear force, which we now call \(n\)-meson. Yukawa’s great achievement of the meson theory earned him the first Nobel Prize in Japan in 1949.

Recent Developments

...
First Demonstration of Environmentally Friendly Nitride-Based Red Light-Emitting Diodes

Yasufumi FUJIWARA
Professor, Graduate School of Engineering
www.mtd.eng.osaka-u.ac.jp/mse6/

Energy harvesting, saving, and storage are technologies essential in realizing a sustainable society. The use of light-emitting diodes (LEDs) as a semiconductor light source is one of the key components of energy saving. Various types of LEDs have been developed and used as indicator lamps in many devices, and are being increasingly used in displays and general lighting. An In,Ga,_,N/GaN multiple quantum well (MQW), grown on sapphire, is used as an active layer in blue and green LEDs, and an Al,Ga,_,Ga,P layer, grown on GaAs, is used in red LEDs. If a GaN-based red-light emitter can be developed, small nitride-based monolithic high-resolution optical devices that comprise red, green, and blue GaN-based LEDs can be realized for full-color displays and/or lighting technology.

Trivalent europium (Eu³⁺) ions have been widely used as red-emitting phosphors in cathode ray tube and plasma display panels. In these applications, the ions are doped in an insulator, and red emission is obtained mainly through optical excitation. Eu-doped GaN has been identified as a promising red emitter because it has excellent luminescence properties in the red spectral region, resulting from the specific optical properties of rare-earth (RE) materials, such as a sharp, intense, and temperature-independent emission peak due to the intra-4f shell transitions.

We have investigated the atomically controlled doping of RE atoms in III-V semiconductors by organometallic vapor phase epitaxy (OMVPE), and have developed novel devices with the luminescent and magnetic properties of RE ions. In this study, we have succeeded in growing Eu-doped GaN layers with high crystalline quality, and have demonstrated for the first time a low-voltage current-injected red emission from p-type GaN/p-GaN/Eu-doped GaN/n-type GaN (n-GaN) LEDs, with an applied voltage of as low as 3 V. A main emission line with a half width of less than 1 nm was observed at 621 nm, which can be assigned to the D⁰₋F⁰ transition of Eu³⁺ ions. Red color corresponding to a wavelength of 621 nm has never been reported for conventional Eu-doped phosphors. Notably, no band-edge or defect luminescence was observed under the bias conditions, indicating that the Eu luminescence is caused by an ultrastable energy transfer from the GaN host to the Eu³⁺ ions. By optimizing growth conditions and device structures in our laboratory, the light output power has been increasing steadily in recent years. For example, the atmospheric pressure growth of Eu-doped GaN markedly enhanced the Eu intensity. This was because of the increased number of optically active Eu centers, and the efficient energy transfer due to the reduced number of non-radiative processes in the GaN host. The LED's light output power also increased monotonically with the thickness of the Eu-doped GaN layer. At present, the maximum light output power of our LED is sub-mW at an injected current of 20 mA, which is the highest value ever reported. The corresponding external quantum efficiency is comparable to that of commercially available nitrogen-doped GaP green LEDs.

Utilizing RE-doped semiconductors with atomic-level control, it is possible to study the exploitation of not only their luminescent and magnetic properties, but also of luminescence properties in the red spectral region, resulting from the specific optical properties of rare-earth (RE) materials, such as a sharp, intense, and temperature-independent emission peak due to the intra-4f shell transitions.

We have investigated the atomically controlled doping of RE atoms in III-V semiconductors by organometallic vapor phase epitaxy (OMVPE), and have developed novel devices with the luminescent and magnetic properties of RE ions. In this study, we have succeeded in growing Eu-doped GaN layers with high crystalline quality, and have demonstrated for the first time a low-voltage current-injected red emission from p-type GaN/p-GaN/Eu-doped GaN/n-type GaN (n-GaN) LEDs, with an applied voltage of as low as 3 V. A main emission line with a half width of less than 1 nm was observed at 621 nm, which can be assigned to the D⁰₋F⁰ transition of Eu³⁺ ions. Red color corresponding to a wavelength of 621 nm has never been reported for conventional Eu-doped phosphors. Notably, no band-edge or defect luminescence was observed under the bias conditions, indicating that the Eu luminescence is caused by an ultrastable energy transfer from the GaN host to the Eu³⁺ ions. By optimizing growth conditions and device structures in our laboratory, the light output power has been increasing steadily in recent years. For example, the atmospheric pressure growth of Eu-doped GaN markedly enhanced the Eu intensity. This was because of the increased number of optically active Eu centers, and the efficient energy transfer due to the reduced number of non-radiative processes in the GaN host. The LED's light output power also increased monotonically with the thickness of the Eu-doped GaN layer. At present, the maximum light output power of our LED is sub-mW at an injected current of 20 mA, which is the highest value ever reported. The corresponding external quantum efficiency is comparable to that of commercially available nitrogen-doped GaP green LEDs.

Utilizing RE-doped semiconductors with atomic-level control, it is possible to study the exploitation of not only their luminescent and magnetic properties, but also of luminescence properties in the red spectral region, resulting from the specific optical properties of rare-earth (RE) materials, such as a sharp, intense, and temperature-independent emission peak due to the intra-4f shell transitions.
Lipid-protein interactions have been recently revealed to play key roles in cell physiology such as signal transduction and substance transportation. Structural biology, which has greatly accelerated the advance of biosciences has mainly been focusing on proteins, whereas hardly dealing with membrane lipids and lipid ligands. Because lipids are highly flexible molecules, the elucidation of their three-dimensional structures binding to or surrounding membrane proteins is extremely difficult even with the use of X-ray crystallography. We have been studying how to elucidate the true active structure of lipids in and around proteins (Fig.1) by using cutting-edge solid-state NMR techniques (Fig.2) combined with ultra-high-resolution X-ray crystallography (Fig.3), organic synthesis and protein engineering. This breakthrough is expected to advance our knowledge in biological and biomedical sciences over the next decade, and also contribute to the research and development of medical and pharmaceutical applications.

In 2010, Professor Michio Murata, department of chemistry, Graduate School of Science, was appointed as a Research Director of the Exploratory Research for Advanced Technology (ERATO) funded by Japan Science and Technology Agency (JST) to expand further his research on lipid for 5 years. ERATO research funding program was founded in 1981, to promote basic research in science and technology as an important part of “Strategic Basic Research Programs” initiated by the Japan government. Its main mission is to make Japan a world leader in science and technology: bringing a bright future to Japan as well as making significant contributions to the international scientific community. For ERATO projects, in parallel with national strategic objectives in science and technology, JST establishes key research areas that offer high potential for creating seeds for new technologies, then appoints a research director to be responsible for each of these strategic research areas. The research director’s mission is to draw up a detailed research plan, recruit staff, and manage the 5-year project to achieve his or her vision as well as national strategy.

Prof. Murata set up an independent research organization from his laboratory at the Graduate School of Science. It consists of the administrative headquarters and three research groups. One of the groups works at Frontier Research Center at Suita campus and the others at Project Research Center of Fundamental Science at Toyonaka campus. Currently there are 15 scientists at both sites and they were recruited from Japan and from abroad. Besides, we have collaborators in the five universities. (Fig.4)

In order to facilitate ERATO research activity and to achieve the interdisciplinary objectives effectively, we regularly have meetings such as weekly meetings with group members, bimonthly meetings with collaborators (Fig.5), and annual meetings with all project members including JST staff (Fig.6), where we usually invite guest speakers to collect information on hot topics on lipid-protein interactions.

Now membrane lipid, especially interactions between lipids and proteins, is one of the most exciting research topics; it is important for us to have a global research network. In 2011 we organized ‘International ERATO Symposium on Lipid Structures in and around Proteins’ and succeeded in expanding the collaboration network with 11 guest speakers from 7 countries (Fig.7). We have revealed some new insights into the mystery of membrane lipids. Such knowledge will highlight not only the basic principles of cell biology and tissues but also fundamental insights into the molecular biology. These findings will surely contribute to biomedical / pharmaceutical sciences through providing fundamental knowledge that can be utilized for diagnosis and medication.
Shigeru KONDO
Professor, Graduate School of Frontier Biosciences
www.fbs.osaka-u.ac.jp/labs/skondo/indexE.html

Over the past three decades, studies at the molecular level have revealed that a wide range of physiological phenomena are regulated by complex networks of cellular or molecular interactions (1). The complexity of such networks gives rise to new problems. However, the behavior of such systems often defies immediate or intuitive understanding. Mathematical approaches can help to facilitate the understanding of complex systems, and to date these have taken two primary forms. The first of these involves analyzing every element of a network quantitatively and simulating all interactions by computation (1). This strategy is effective in relatively simple systems, for example, the metabolic pathway in a single cell; it is also extensively explored in the field of systems biology. Nonetheless, for more complex systems in which spatiotemporal parameters take on importance, it becomes almost impossible to make a meaningful prediction. In such cases, a second strategy involving simple mathematical modeling from which the details of the system are omitted can be more effective in extracting the nature of the complex system (2). The reaction-diffusion model (3) proposed by Alan Turing is a masterpiece of this type of mathematical modeling, one that is capable of explaining how spatial patterns develop autonomously. In the RD model, Turing used a simple system of ‘two diffusible substances interacting with each other’ to represent patterning mechanisms in the embryo, and found that such systems have the ability to generate spatial patterns autonomously. Unfortunately, Turing died soon after publishing this legendary paper, but simulation studies of the model have shown that this system can replicate most biological spatial patterns (4,5,6). Later, a number of mathematical models (4) were proposed, but in most of them, Turing’s basic idea that ‘the mutual interaction of elements results in spontaneous pattern formation’ has been followed. The RD model is now recognized as a standard among mathematical theories that deal with biological pattern formation.

At the same, this model has yet to gain wide acceptance among experimental biologists. One of the major causes for this is the gap between the mathematical simplicity of the model and the complexity of the real world. The hypothetical molecules in the original RD model have been so idealized for the purposes of mathematical analysis that it seems nearly impossible to adapt the model directly to the complexity of real biological systems. Yet, this is a misunderstanding to which experimental researchers tend to succumb. It is possible to understand the logic of pattern formation using even simple models, and by adapting this logic to very complex biological phenomena, it becomes easier to extract the essence of the underlying mechanisms. Genomic data and new analytic technologies have caused a shift in the target of developmental research from the identification of molecules to understanding the behavior of complex networks, making the reaction-diffusion model more important as a tool for theoretical analysis. For the past ten years, our group has been trying to identify the cellular and molecular basis of how the skin pattern of animals is made by using zebrafish, small fish with striped skin. The first thing we did was to show the wave-like activity of the skin pattern. As the theory predicts that the pattern is a type of ‘wave’, it must move when artificially disturbed. The picture shown on the left is the change of the skin pattern induced by the killing of the black stripes (black pigment cells). This dynamic pattern change is precisely predicted using the simulation of RD model. We then examined the cellular behavior of cell pigment and found the cell activity was what Turing’s theory had predicted.

Using the experimental data we published, the idea of Turing’s theory has now become more accepted among biologists. In recent works, a number of scientific reports have suggested the involvement of Turing’s mechanism in the morphogenesis of embryos. Our group is also trying to show that the Turing mechanism is functional during the shaping of vertebrate bones.

U_t = D_U \nabla^2 U + f(U, V)
V_t = D_V \nabla^2 V + g(U, V)

▲ Photos of Alan Turing and the 3D patterns generated by the Reaction-diffusion equation presented by him.
▲ Reaction-diffusion equation. U and V represent the local concentration of the chemicals.
▲ Schematic model of the interactions that generates the pigment pattern.
▲ The change of zebrafish skin pattern induced by an artificial injury is predicted by the simulation of RD equation.
▲ Skin pattern of Pomacanthus imperator gradually changes as it grows.
▲ The change of pigment pattern during the growth of angelfish.
Creation of innovation centers for Advanced Interdisciplinary Research Areas
Human-Robot Theater

Hiroshi ISHIGURO
Professor, Graduate School of Engineering Science
http://eng.irl.sys.es.osaka-u.ac.jp/

Human-robot theater has important meanings both for robotics and theater. In order to create interactive robots that can function in our daily lives, creators need to have knowledge of humanlike, natural, robot behaviors common to everyday situations. Researchers such as psychologists do not have the knowledge that can be applied to these complicated everyday occurrences. However, theater directors who can create realistic theaters do have these skills. Robot creators need to learn about natural robot behaviors from natural behavior itself in complicated environments.

Hiroshi Ishiguro, robot creator and distinguished professor at Osaka University and Oriza Hirata, representative of Seinendan Theater Company and a professor of Osaka University, have been collaborating for more than six years on various levels. Ishiguro is learning everyday, humanlike behavior from Professor Hirata by developing robots based on this knowledge and subsequently submitting patents on the developed robots. At the same time, Hirata is creating new theaters with the robots and androids. Human-robot theater has broken down the stereotypes of traditional theater in the sense that it should be played by humans. It has also been recognized as a top-level artistic production.

Human-robot theater created at Osaka University is a typical example of the fusion of the arts and sciences; the following three theaters have been created by Ishiguro and Hirata. Ishiguro is the technical advisor and creator of the robot called Robovie and the android named Geminoid; Hirata, the script writer and director of the theaters.

I, Worker (Hataraku-watashi in Japanese)
This is the first full-scale human-robot theater production featuring two robots co-developed by Ishiguro and Hirata at Osaka University. Set in the near future at a time when it is natural for robots and humans to co-exist, ‘I, Worker’ depicts a young couple, the Mayamas, who live with two robots named Takeo and Momoko. While Momoko plays an essential role in the family through her work, Takeo suffers from mental illness and loses his motivation to work. By definition, robots are made to work but by portraying a robot that cannot, the play invites the question, “What does work mean to humans?” This piece lasts only 30 minutes but its premiere was met with great excitement and powerful emotion by the audience.

In the Heart of a Forest (Mori-no-oku in Japanese)
Ishiguro and Hirata, two internationally acclaimed talents, have teamed up to develop the Human-Robot Theater Project to be performed at theaters and this production marks its world premiere.

The story is set in a bonobos research institute.
Bonobos is a great ape only found in the Republic of the Congo in Central Africa. At the institution, robots and humans are studying differences between apes and humans. Their conversations reveal fine lines between apes, humans and robots.
Robots and humans behave quite naturally, have dialogues and relate to one another on stage. ‘In the Heart of a Forest’ is an unprecedented theatrical endeavor that gives audiences a glimpse of how robots and humans can co-exist in the near future. Audiences will not only be impressed, but moved by the robots. It is an innovative collaboration where the entire production becomes a cutting-edge experiment that crosses ‘theater’ and “science” – the process of its creation and performance can be directly fed back into the field of robot research.

Good-Bye (Sayonara in Japanese)
After their human-robot theater production of ‘In the Heart of a Forest’ created a sensation in various fields, Ishiguro and Hirata presented the world premiere of their new piece ‘Good-Bye’ as part of Aichi Triennale 2010. This innovative short play is played by a Geminoid F, a humanoid robot developed by Ishiguro in Osaka University looks exactly like the actress after whom it was modeled. Examining the question, “What does life and death mean to humans and robots?” this piece will alter the audience’s images of robots and humans, and present a compelling fusion of theater arts and science.
Exploring New Fields of Science with Power Laser and Plasma Technologies

Ryosuke KODAMA
Director Professor, Graduate School of Engineering and Photon Pioneers Center
http://www.eie.eng.osaka-u.ac.jp/ef/

Introduction
High power laser technologies are now opening up a variety of attractive fields in the sciences and technologies that deal with high-density plasma. A high power laser can create many states of matter, such as solid states under pressures of more than 1 Tera Pascal (TPa), and high-temperature dense plasma states, in which the motion of electrons is close to the speed of light. The science of such extreme states is called High Energy Density Science (HEDS), and has the potential of a wide range of applications, such as the development of extremely compact accelerators and radiation sources; material processing under extreme conditions; and nuclear technologies, including medical applications and laser fusion.

Creating Novel Matters and Materials Under Extreme Conditions: The HERMES Project
One of the most interesting topics in the HED sciences is the creation of extreme states of matter with pressure levels of more than 10TPa, which can be easily attained via a strong shockwave generated by commercial product power lasers. Such strong shockwaves are now utilized in laser peening, a process through which the life time and strength of materials is improved. Utilizing this strong shockwave, high power lasers can easily generate pressures of more than 1TPa. The pressure above 0.1TPa is the energy density corresponding to the material’s chemical bonding energy, and this added pressure effects an expectation of dramatic change in chemical reactions. At pressures of more than 1TPa, most materials melt in the shock wave. However, if the temperature is less than about 10000K, or lower than the melting point at pressures of more than 1TPa, novel solid state matter must be created through pressured phase transition. Carbon is one of the most interesting materials at pressures of more than 1TPa and temperatures lower than the melting point. Under such conditions the diamond structure of carbon changes to BCC8, and becomes cubic at more than 3TPa. The band gap disappears in cubic structure carbon, and semiconductor diamonds become metallic. On the other hand, BC8 carbon will still be a semiconductor and harder than the conventional diamond, and is therefore called Super-diamond. We have now succeeded in generating states in which the Super-diamond can be attained, and we are investigating the details of this new material. Many kinds of materials with novel structures exist at pressures above the TPa level—materials which have never existed before on the earth but could exist in the core of the Super-earth. We are now exploring this new field of research, called Tera-Pascal Science. To this end, we now have a new x-ray free electron laser, in addition to our original high power laser. We have started a new project in HEDS that utilizes the XFEL (SACLA) and other high power lasers in Japan. This is called the HERMES (High Energy density Revolution of Matter in Extreme States) project.

The Laser Plasma Accelerator and Prometheus’s Light (Ultimate Radiation Source)
Ultra-intense lasers can create large electric fields in plasma waves traveling near the speed of light. Particles trapped in this wave will, like a surfer, be accelerated to high energy states within the range of an extremely short distance. In order to realize this laser-plasma acceleration, plasma photonic devices for the effective control of plasma waves and light propagation are necessary. The pointing stability of the electron beam emitted by our plasma photonic device is now less than 0.5mrad, the best in the world. We are also developing a plasma device for the phase control and multi-stage acceleration of electrons. This technology will make possible compact mobile accelerators at the GeV (10^9 eV) scale for use in security scanners, university-scale X-ray light sources, and the XFEL for use in biological and materials research as well as ubiquitous advanced medical imaging devices; and will realize an ultimate source of radiation, which could be called as Prometheus’s Light.

Plasma Photonic Device for Opening Pandora’s Box (Vacuum)
The combination of plasma photonic devices and high power lasers will also open up a new field of scientific research; quantum vacuum optics. One of the topics in quantum vacuum optics is the investigation of light scattering in vacuums as a nonlinear process. This is related to the quantum fluctuations in vacuum that took place at the beginning of the Universe. According to the uncertainty principle, vacuums possess quantum fluctuations, and photons can interact with vacuum. Classical analogies between quantum fluctuation and special relativity may allow us to imagine virtual particles existing in vacuum for a short time. Intense laser light could interact with the virtual particles, resulting in nonlinear optics in vacuum. We have developed a spheroid plasma mirror as a fast focusing optics technology for high power lasers, with which we will be able to open the vacuum, or in other words, Pandora’s Box. Taking account of the interaction between intense light and vacuum, this fast optics reduces the required laser power by 10 orders of magnitude, making possible the study of laser/vacuum interaction at the realistic laser power of below 10PW.
Understanding Self-Destructive Behavior

Many pathological problems that are prevalent in modern society, such as undersaving, overborrowing, credit-card bankruptcy, and lifestyle-related diseases (obesity, smoking, drug abuse, and gambling addiction), are all closely related to our own ‘self-destructive choices’, i.e. decisions or choices that we make that result in harm to ourselves. The main interest of my recent research is to elucidate the mechanism underlying various self-destructive decisions and the prescriptions to cope with those mechanisms from a unified viewpoint.

Such a unified approach is reasonable when one finds that there are often strong associations between different types of self-destructive behavior. Based on a nationwide internet survey in 2010, the first figure shows a typical example of the association between obesity and indebtedness. In both the male and female samples, the debtor group exhibited a higher obesity rate than the non-debtor group, and this difference is too large to attribute solely to statistical errors. The association of the seemingly unrelated self-destructive choices implies that a latent common mechanism underlies the choices. By conducting questionnaire survey and economic experiments, the joint research team and I have noted that people make self-destructive choices because they are less patient when making decisions related to immediate rewards than those rewards in the distant future. This present-biased preference is called hyperbolic discounting. As depicted in the illustration, under hyperbolic discounting, the more immediate (temporally closer) the reward is, the more tempting it is. The most serious consequence of hyperbolic discounting on behavior is that it makes it difficult for people to carry out plans or decisions that were previously made with long-term benefits in mind. The reason is that as time passes, our degree of patience while we wait for future gratification lessens, so that previous plans or decisions that were made with long-term goals in mind become non-optimal at the moment they are performed. This leads to self-destructive behavior. The second figure shows that hyperbolic discounters are indeed more likely to exhibit self-destructive tendencies than non-hyperbolic discounters. These findings were summarized in a book written in Japanese, entitled Self-Destructive Choices, which was awarded the 55th Nikkei-Economics Book Culture Award in 2012. It was translated into the Korean language in 2013, and an English translation is soon to be published.

Toward New Economics of Willpower

Under hyperbolic discounting, there are different ‘selves’ at different points in time. Because each one of these selves tends to be most interested in its own immediate profit, a conflict of interest takes place. If the selves’ behavior is not organized, each of them will pursue its own immediate preferential gratification. In other words, hyperbolic discounting conceives the self-control problem as a conflict between a long-term and a short-term self. Both of these selves reside inside a person: a long-term self (angel) who considers the person’s long-term benefits, and a short-term self (devil) who considers the short-term benefits. The angel makes a wonderful long-term action plan with unwavering patience, but it is the devil that carries out plans on a daily basis. With low patience, the devil breaks the future-oriented, long-term plan that the angel has made, and thereby the individual falls into the intertemporal and self-indulgence of pursuing his or her own short-term benefits.

Efficient economic behavior in favor of long-term well-being, especially consumption and/or saving behavior, thus needs self-control. Self-control in turn needs willpower. Thirdly, people who are unaware of the critical role of willpower in the long run tend to consume more tempting goods than people who are aware of its role.

By conducting questionnaire survey and economic experiments, the joint research team and I have noted that people make self-destructive choices because they are
Regenerative cell sheet technology to repair the heart
~ It's a whole new ball game ~

Yoshiki SAWA
Professor, Graduate School of Medicine
www.med.osaka-u.ac.jp/index-e.html

Our department, the Department of Cardiovascular Surgery Osaka University Graduate School of Medicine, is the First Department of Surgery, Osaka University Medical School, which is one of the leading groups of cardiovascular surgery in Japan. It was initiated by Prof. Herter from Germany in 1922. We actively developed the field of cardiovascular surgery as a front runner. In 1943 we initiated cardiovascular surgery and first case of open heart surgery supported by cardiopulmonary bypass in Japan was succeeded by our department in 1956. Until now, we have experienced more than 10000 cases of cardiovascular surgery. In 1999 we succeeded heart transplantation, and heart and lung transplantation in 2009. In this way, we have challenged to establish the field of heart failure surgery, such as 50 cases of heart transplantsations and 200 cases of left ventricular assist devices. However, these treatments have still problems such as donor shortage, chronic rejection, lethal infection and coronary artery disease or several complications. Therefore, we performed extensive research to overcome these clinical issues.

Transplantation of autologous stem cells has been shown to yield functional recovery of the failing heart via ‘paracrine effects’ that enhance the native regenerative process. However, almost all of the reported therapeutic effects are clinically modest. We developed myocardial regeneration therapy using cell sheet technology in the cooperative research with professor Okano of Tokyo Women’s Medical University. We have developed the skeletal myoblast sheets without scaffold attached on the epicardial surface to enhance the native regenerative process. This development suggests a possibility of regeneration medicine for severe cardiac failure. Based upon the ‘proof-of-concept’ studies, in 2007, we succeeded the first-in-man clinical trial of myocardial regeneration treatment by the myocardial sheet using the autologous myoblast, which is the world’s first full-fledged myocardial regeneration medicine (Surgery Today 2012). Then, phase I Clinical Trial was launched to prove that autologous skeletal muscle derived stem cell sheets transplantation may be feasible, safe and effective for treating severe congestive heart failure.

To date, we have carried out transplants in 30 severe cardiac failure patients and demonstrated that this treatment method improves the cardiac function and symptoms of severe cardiac failure patients safely and prolongs their survival including the world’s first two patients released back into society without LVAD. As shown above, the candidate’s global contribution enabling establishment of this treatment method which can improve the cardiac function using the autologous cells in severe cardiac failure patients cannot be overestimated. Since last year, the trial has started in Terumo Co., Ltd. after transferring the technique, enabling the development to the universal treatment method.

Furthermore, since 2008, we have performed cooperative research with professor Shinya Yamanaka on clinical application of pulsatile myocardial cell sheet derived from IPS cells, clarified the effectiveness of myocardial cell sheet derived from human IPS cells in large animals, and demonstrated proof of concept (POC) (Circulation 2012). Currently his laboratory is one of four regeneration medicine bases of Ministry of Education, Culture, Sports, Science and Technology, and is challenging practical application of more effective full-fledged myocardial regeneration medicine by myocardial cells derived from IPS cells in these years, receiving aid for ten years.

From the standpoint of the leader of the academic society, we also contributed to re-regulations in Japan, establishment of regulatory science, and more recently preparation for the revised pharmaceutical affairs law to promote regenerative medicine. We have also contributed to the launch of Medical Center for Translational Research in Osaka University up to the current formation of the base in 2002, and exerted for integrated field education, business-academia collaboration, and medicine-technology collaboration.

Our achievement is highly evaluated both domestically and internationally as the useful technique with extremely high novelty and originality, and is expected to save the lives of many severe heart failure patients all over the world. On the other hand, we also put his heart into cultivation of human resources, increased the number of surgery to over 800 cases yearly, the highest in the national university, due to the predominant management of his section and excellent surgical results, and there are many people who want to enter his department with high popularity. As shown above, we place the importance on ‘the attitude to pursue what is the truth’, promoted the medical research from the novel viewpoint without being entangled by the existing concept, made excellent use of molecular biology, genetics, stem cell science, and system engineering for establishment of surgical treatment system for severe cardiac failure, obtained breakthrough achievements, and greatly contributed to the promotion of medical research in our country.

Report of Success of First in man in the Main Paper

Mechanism of regenerative effect of myoblast sheet. Myoblast sheet expressed HI-1, induced HGF, VEGF, FGF and SDF-1, resulting in angiogenesis, stem cell migration, decrease of fibrosis and attenuation of cardiac remodeling.

Culture of Skeletal myoblasts and preparation of Myoblast Sheets

Implantation of myoblast sheets on the failing heart

Cardiac tissue by cell sheet technology

The first-in-man clinical trial of myocardial regeneration treatment
The continuous problem of processing more information. Our area, then, may offer unique and profound solutions to concurrent increases in its energy demands. Research in strategies. The brain, for example, is always transmitting and has also joined to make this an even more potent partnership. Toshio Yanagida, says “We are considering alternative telecommunications research institute international (ATR) these results to new ICT and networks. The advanced CiNet as a center for pure and applied research on human brain function. To carry out the mission, in 2009, Osaka University and the National Institute of Information and Communications Technology (NICT) came to an agreement on a large-scale collaboration on the study of brain function and applying these results to new ICT and networks. The advanced telecommunications research institute international (ATR) has also joined to make this an even more potent partnership. To resolve the ICT problems, the director general of CiNet, Toshio Yanagida, says “We are considering alternative strategies. The brain, for example, is always transmitting and processing new and increasing levels of information without concurrent increases in its energy demands. Research in this area, then, may offer unique and profound solutions to the continuous problem of processing more information. Our vision is to bring ICT scientists together with people from neurosciences, psychology, philosophy, economy, and the cognitive sciences to develop brain-based applications to ICT”. CiNet as an advanced research center In 2013, the main building of CiNet was completed on Suta campus at Osaka University, in which about 160 researchers and students are working on a daily basis. In addition, CiNet has more than 130 of collaborative researchers from various fields in Osaka Univ., NICT and ATR. Having advanced research instruments including MRI (11.7T, 7T, 3T, 1.5T) and MEG (360ch, 110ch) which are exclusively used for basic brain function research, CiNet is now seemed to be a national research center for top-down approach in human brain science. CiNet Research in four major fields To obtain outstanding outcomes, research in the following four fields is carried out. 1) Understanding and applying how the brain identifies the ‘heart’ of a message -applying the mechanisms for how the brain processed information to better communications -social action in terms or brain information science -how the human vision system works -neural representation and information networks -underlying perception -understanding the brain’s communication network -how the brain conducts working memory and cognition -brain function mechanisms of multisensory cognition -understanding the brain’s communication network -how the brain conducts working memory and cognition -brain function mechanisms of multisensory cognition -for creating high-quality communication 2) Building a low energy information and communications network based on human brain function -energy-efficient and robust information network control based on neural and biological functions -simple, energy-efficient network control using fluctuation -modern ICT system design based on the brain -robot control based on biological fluctuation -human interfaces utilizing brain functions 3) Developing brain-machine interfaces (BMI) for human care and advanced communications -the mechanisms for cognition and motor control and applying them to BMI -using BMI to enhance brain function and environmental adaptability -supporting handicapped people with advanced ICT motor BMI -next generation artificial retina-sensory BMI -computational neuroscience of human pain and aversive learning -fundamental BMI technologies for brain science and clinical application 4) Brain function measuring technologies -a magnetic resonance method to probe the brain -intracerebral neurotransmission networks: analyses with PET and MRI -brain network dynamics by integrating multiple information sources -brain function measuring techniques in high field MRI CiNet as a center for ‘omoroi’ research Under the initiative of director Yanagida, it is strongly recommended for all researchers to do the “omoroi” research. “Omoroi” is a Japanese dialect word in Osaka area, of which meaning is extremely amazing. To perform the task, CiNet members have a lot of chances to exchange interdisciplinary information in seminars, workshops, or tea time and to plan collaborative new trials. Based on our achievements, we have already started new collaborative projects with academic research institutes or industrial companies outside of CiNet.
The Osaka University Institute for Academic Initiatives (IAI) was set up in order to promote, under the leadership of President Hirano, interdisciplinary cross-boundary education and research. Each of Osaka University’s schools conducts education and research in professional fields; however, modern society faces many challenges that require creative approaches, approaches that require scholarship from more than one field. Thus, the IAI was set up for the purpose of promoting such cross-border, medium- and long-term learning and research, strategies for a future viewed as a whole.

In the IAI, the president appoints trustees to serve as managers, as vice directors, who together with deans and directors from education and research departments make timely decisions on management, personnel, and budgets. The IAI possesses its own administrative office, the Office for academic Initiatives, in order to enable the smooth execution of general, personnel, curricular, and accounting decisions. The Strategic Planning Office, the planning division of the IAI, supports management in education and research of the institute. The office conducts new research with the aim of the educational revolution and suggests planning for globalization of the university.

Thus far, the Institute for Academic Initiatives has set up eight programs. In 2011, the IAI set up two programs, the Cross-Boundary Innovation Program (CBIP) and the Interdisciplinary Program for Biomedical Science. Subsequently, Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) selected these two, along with others submitted by other universities in Japan, for its “Leading Programs in Doctoral Education.” Then, in 2012, the IAI set up three new programs, the Interactive Materials Science Cadet Program (IMSC), the Humanware Innovation Program, and the Doctoral Program for Cultural Innovation. These three programs have now also been selected for MEXT’s Leading Programs in Doctoral Education. Later in the same year, in December 2012, the IAI set up the Program for Innovative Research for Drug Development. This program functions as a 6th program to further enhance research capability in the field of life sciences at Osaka University and implement cross-boundary research for drug development. The institute set up the 7th Division (Division of Cognitive Neuroscience Robotics) in February 2013 with the aim of establishing the field of Cognitive Science and Robotics which centers on human-oriented Robotics together with Cognitive Science and Neuroscience. In May of the same year, the 8th Division (Division of Photon Science and Technology) was set up with the purpose of promoting interdisciplinary research on Photon Science and Technology, raising its potential.

Leading Programs in Doctoral Education aim to promote the efforts of graduate schools to create and develop world-class degree programs, programs transcending the borders between disciplines with the aim of producing superior graduates possessing broader perspectives, capable of serving as international leaders in academia, business, and government. These programs aim to cultivate graduate students with the methodology to perceive the nature of issues by strengthening and broadening their knowledge and providing them with the overall ability to apply their expertise also in fields outside their specialty, thereby enabling them to be active in international society. An overview of each program at Osaka University can be found on the following pages. In addition to standard courses at graduate schools, graduate students participating in these programs broaden and deepen their knowledge through leading program courses designed by the IAI. One might compare this approach to weaving, the standard professional education and research courses at each school are the “threads” while the interdisciplinary cross-border programs are the “wools linking” strengthening, and enhancing the fabric of the students’ scholarship.

Ultimately Osaka University’s goal in setting up the IAI is the fostering and strengthening of its graduates’ research and scholarship, a foundation on which the university will shine even more brightly as a world university of the highest caliber.

President, Toshio Hirano

The Institute for Academic Initiatives (IAI) logo incorporates a dual image, that of a bird and a star. This star-bird represents Osaka University and its heritage. The star-bird “Osaka University” is shown climbing, striving, leading always higher, reaching for the goal “to be a university that shines forth even into the 22nd century.”

Strategic Planning Office, Institute for Academic Initiatives (IAI)

The University has established a Strategic Planning Office for the Institute for Academic Initiatives (IAI). This planning division comprises three teams; the Education Reform Team, the Research Planning Team and the Institutional Research Team.

The Strategic Planning Office has two primary functions:

1) To support the management of the IAI’s education and research activities, and;
2) To devise and propose strategic globalization plans that will underpin educational reform, new research programs within the University, and to allow the development of recommendations for utilizing independent research administrators and external experts from industry and overseas.

Education Reform Team:
The Education Reform Team brings together the educational power of the University, develops and implements high-quality, cross-boundary education programs to nurture leaders with extensive and diverse expertise who can solve various problems in modern society. Furthermore, the Team plans interdisciplinary education programs and methods for enhancing the quality of education to be more internationally recognized and promotes the cultivation of global human resources.

Research Planning Team:
Based on domestic and overseas research trends, the Research Planning Team aims to develop cutting-edge research programs, promising researchers and new research fields. It also proposes future research strategies that incorporate the University’s research activities. To achieve these aims, the Team researches and analyses international research support trends both inside and outside of the University. Based on these findings, the Team designs and proposes interdisciplinary research programs, and plans for the reporting and dissemination of research results. In addition, the Team supports the dissemination of the University’s research results, including the findings of the education and research promotion departments.

Institutional Research (IR) Team:
In supporting the Strategic Planning Office to design the University’s educational reform and research strategies, the IR Team collects, analyses, evaluates and provides various data that contribute to the strategic management of the University. From a technical standpoint, the Strategic Planning Office will comprehensively support and promote the educational and research activities and policies of IAI, utilizing the powerful combination of these three teams.
Cross-Boundary Innovation Program

The Cross-Boundary Innovation Program (CBI) is a five-year transdisciplinary degree program. Its development has been supported by the Japanese government’s Ministry of Education, Culture, Sports, Science and Technology as one of the first three programs in the “Programs for Leading Graduate Schools (All-Round Models)” since 2011. The program aims to cultivate individuals with the creative strategic skills and competencies needed to deal with diverse values and fields. CBI graduates will be able to go beyond traditional frameworks they will possess the power to generate what is “only possible by crossing boundaries.” Today, global society faces a multitude of challenges in areas such as the environment, energy, poverty, ageing populations, discrimination, changes in the international economic system, and international law and order, to mention just a few. Many of these challenges need to be addressed from a global perspective and can only be solved by introducing concepts that span existing boundaries and promote collaboration among societies. Thus, a new generation of doctoral graduates capable of dealing with cross-boundary issues is required.

Crossing the boundaries of all courses, the program is open to graduate students enrolled in any graduate course at Osaka University. Enrolled students will complete the coursework of the program in addition to their professional education in their registered graduate schools, as can be seen in the figure below. The program offers innovative and unique courses, such as cross-boundary modules on diverse knowledge and generic skills, research skills, overseas training and internships, language training, and life-skills training.

For more information, please visit the website http://www.cbi.osaka-u.ac.jp/en/

The Interdisciplinary Program for Biomedical Sciences (IPBS)

The IPBS is a 5-year interdisciplinary graduate program in biomedical sciences. International students admitted through recommendation will begin their enrollment from the second year; and thereby, they will graduate from the program in 4 years (see the figure below). The program is designed for students to acquire a comprehensive understanding of organisms required for high-quality interdisciplinary research, and to attain the communication skills essential for assuming leadership in the life science field.

The faculty body consists of acclaimed scientists from the Graduate Schools of Medicine, Pharmaceutical Sciences, Engineering, Frontier Biosciences, Science, and Dentistry at Osaka University, as well as from researchers from our affiliated major corporations.

The IPBS has devised courses that cross disciplinary boundaries in an effort to teach about the human diseases seen in the figure below. The program curriculum (the curriculum for international students is depicted on the right-hand side)

The multi-faceted curriculum organically links together various interactive ideas and approaches together by combining a range of components including multiple instructor systems, laboratory rotation, liberal arts subjects, career guidance, private sector internships and overseas study opportunities. In this way, the curriculum is designed for the training of well-rounded Materials Science Cadets.

The Cross-Boundary Innovation Program (CBI) is a five-year transdisciplinary degree program. Its development has been supported by the Japanese government’s Ministry of Education, Culture, Sports, Science and Technology as one of the first three programs in the “Programs for Leading Graduate Schools (All-Round Models)” since 2011. The program aims to cultivate individuals with the creative strategic skills and competencies needed to deal with diverse values and fields. CBI graduates will be able to go beyond traditional frameworks they will possess the power to generate what is “only possible by crossing boundaries.” Today, global society faces a multitude of challenges in areas such as the environment, energy, poverty, ageing populations, discrimination, changes in the international economic system, and international law and order, to mention just a few. Many of these challenges need to be addressed from a global perspective and can only be solved by introducing concepts that span existing boundaries and promote collaboration among societies. Thus, a new generation of doctoral graduates capable of dealing with cross-boundary issues is required.

Crossing the boundaries of all courses, the program is open to graduate students enrolled in any graduate course at Osaka University. Enrolled students will complete the coursework of the program in addition to their professional education in their registered graduate schools, as can be seen in the figure below. The program offers innovative and unique courses, such as cross-boundary modules on diverse knowledge and generic skills, research skills, overseas training and internships, language training, and life-skills training.

For more information, please visit the website http://www.cbi.osaka-u.ac.jp/en/

The Interdisciplinary Program for Biomedical Sciences (IPBS)

The IPBS is a 5-year interdisciplinary graduate program in biomedical sciences. International students admitted through recommendation will begin their enrollment from the second year; and thereby, they will graduate from the program in 4 years (see the figure below). The program is designed for students to acquire a comprehensive understanding of organisms required for high-quality interdisciplinary research, and to attain the communication skills essential for assuming leadership in the life science field.

The faculty body consists of acclaimed scientists from the Graduate Schools of Medicine, Pharmaceutical Sciences, Engineering, Frontier Biosciences, Science, and Dentistry at Osaka University, as well as from researchers from our affiliated major corporations.

The IPBS has devised courses that cross disciplinary boundaries in an effort to teach about the human diseases seen in the figure below. The program curriculum (the curriculum for international students is depicted on the right-hand side)
Multicultural Innovation
where the students can observe and engage with real
particular emphasis on exposure to field experience
including fieldwork and internship opportunities, which
Transformation).
we use the acronym “RESPECT” (Revitalizing and
program will achieve its goals of enhancing multicultural
primarily through a sense of respect for others that this
coexistence among people with diverse social
and cultural backgrounds. These competencies will be
rooted in a profound understanding of others. As it is
primarily through a sense of respect for others that this
program will achieve its goals of enhancing multicultural
understanding and changing society for the better, we
use the acronym “RESPECT” (Revitalizing and
Enriching Society through Pluralism, Equity, and Cultural
Transformation).
A range of rich learning experiences will be provided,
including fieldwork and internship opportunities, which
will encourage students to apply theory to practice,
and then derive theory from practice. We place
particular emphasis on exposure to field experience
where the students can observe and engage with real
world problems and from this create new knowledge
collaboratively with diverse stakeholders.

Division of Innovative Research for Drug Development
Osaka University promotes intensive research
on drug development through diverse techniques,
disease-related proteins, mechanisms of pathogenesis,
and more. In order to recognize such efforts, agencies
such as Japan’s Ministry of Education, Culture, Sports,
Science and Technology (MEXT), the Ministry of
Health, Labour and Welfare (MHLW) and the Ministry of
Economy, Trade and Industry (METI) select proposals
from independent departments and cross-graduate
organizations as major projects.
Based on Osaka University’s research capabilities
in this area and in order to promote research in life
sciences, particularly in drug development, the Division
of Innovative Research for Drug Development was set
up in order to strengthen the development process
itself through to clinical research.
The Division will become a base for innovative
research into drug development by conducting
research into the development of therapeutic agents
for intractable diseases and new diagnostic drugs
along with the gathering of information on diseases,
material and analysis technology, fundamental to
research in drug development. This research will also
be conducted in close collaboration with affiliated
hospitals and institutes of biomedical innovation
at Osaka University. Through such measures and
strategy, Osaka University aims to become a world-
leading research center for drug development,
implementing comprehensive research from basic
research through to clinical research.

During the five-years of the program students will
develop multicultural competencies in the form of
advanced-level literacy in six areas: global, multilingual,
policy, research, fieldwork, and communication.
After graduation they will be well placed to take up
positions as the leaders of social innovation in
international organizations, global corporations,
government, local authorities, universities, research
institutes, and NGOs.
For more information, please visit the website
http://www.respect.osaka-u.ac.jp/en/

Division of Cognitive Neuroscience Robotics
The 7th Division of the Institute for Academic
Initiatives, Division of Cognitive Neuroscience Robotics,
focuses on the development and application of a new
interdisciplinary field named “Cognitive Neuroscience
Robotics.” Humans increasingly rely on machines
and computers in the contemporary society. Even human-
human interaction and communication depend heavily
on advanced technologies. Machines and technologies
influence or even encroach into ordinary human lives.
The human brain may be overloaded by the amount
of information and the rapid change of environment
that are brought about by the growth of technology.
One of the aims of Cognitive Neuroscience Robotics
is to create genuinely human-friendly information
and robot technology (IRI) systems by connecting methods
and ideas from across robotics, cognitive science,
psychology, and neuroscience. The robotics and brain
researches at Osaka University are worldly recognized.
It has reciprocal merits to combine these and related
researches. The study of human brain functions and
their developments is highly important for designing
and engineering human-interactive robots, and robotics
sheds new lights on personal and social cognition of
humans.

Division of Photon Science and Technology
Photon science and technology provide innovative
approaches in broad range of the fields of basic science
to industry and medicine. In recent years, there have
been significant advances in the development of
photonics such as nano-photonics, power photonics
and plasma photonics and optics including x-ray
and beam control and also in the understandings
of the nature of light. Due to these advances, many
new possibilities are emerging which must provide
breakthroughs in various fields. Osaka University is
among the most active on the photon science and
technology including quantum beam technology in the
world. More than 100 research laboratories or groups
in the graduate schools and institutes concern the
Photon science and technology in each institute and on expanding
their applications to either academic innovation or
industry innovation in the variety of fields as the leading
laboratories in the world. Based on the advantage
and potential of Osaka University on photon science
and technology, the Division of Photon Science and
Technology in Institute for Academic Initiatives will
promote further and higher progress of the research.

The range and scope of Cognitive Neuroscience
Robotics are large and far-reaching, covering the
fundamental issues concerning the development of
self/other cognition and the concept of time. Cognitive
Neuroscience Robotics ultimately will contribute to the
perennial philosophical question of what human is,
which must be seriously addressed in the contemporary
society where human life inevitably involves interaction
with machines. The mission of the division is to
make Osaka University a world leader in science and
technology by uniting the international communities
of scientists and scholars and promoting collaborative
research in the wide range of fields.
‘Osaka University Distinguished Professor’

To further promote academic initiatives aimed at making Osaka University an internationally competitive center of education and research, the university has created an official title ‘Osaka University Distinguished Professor’ in order to recognize individuals who play leading roles at the University coupled with outstanding achievement.

The selection committee, which includes outside members, examined the achievements of individuals recommended by educational research and education organizations and by Osaka University vice-presidents. The committee moved to grant the title of Osaka University Distinguished Professor to the 12 recipients noted below.

In addition to the title of Osaka University Distinguished Professor, a Distinguished Professor Allowance is granted to each recipient to help support their activities. The title and allowance are valid for a maximum of 3 years.

This program aims to invite distinguished researchers from around the world by guaranteeing better employment conditions. We welcome any future Osaka University Distinguished Professors who conduct research on a world-class level.

Osaka University Distinguished Professor eligibility requirements:
1. Individuals who have achieved outstanding recognition such as receiving one of these prizes: Order of Culture, Person of Cultural Merit, Japan Academy Prize, Japan Prize, Medal with Purple Ribbon, Kyoto Prize, and/or international prizes equivalent to the above.
2. Individuals who achieved some other type of outstanding achievement equivalent to the above.

Osaka University Distinguished Professors, As of April 1, 2014

AKIRA Shizuo,
Professor, Immunology Frontier Research Center
Achievement: Outstanding research in natural immunity
Awards: 24 awards including Gairdner International Award(2011), Person of Cultural Merit(2009), Imperial Award and Japan Academy Prize(2007), Medal with Purple Ribbon(2005)
http://www.ifrec.osaka-u.ac.jp/index-e.php

ISHIGURO Hiroshi,
Professor, Graduate School of Engineering Science
Achievement: Outstanding research in robotics and robot-human interaction
Awards: 44 awards including Osaka Culture Award(2011)
http://eng.irl.sys.es.osaka-u.ac.jp/

OHTAKE Fumio,
Professor, Institute of Social and Economic Research
Achievement: Outstanding research in labor economics and public economics
Awards: 11 awards including Japan Academy Prize(2008),
http://www.iser.osaka-u.ac.jp/index-e.html

KAWATA Satoshi,
Professor, Graduate School of Engineering
Achievement: Outstanding research in nanophotonics
Awards: 15 awards including Medal with Purple Ribbon(2007)
http://www.skawata.com/english

KITAOKA Yoshio,
Professor, Graduate School of Engineering Science
Achievement: Outstanding research in condensed matter physics
Awards: 4 awards including Medal with Purple Ribbon(2012)

SAKAGUCHI Shimon,
Professor, Immunology Frontier Research Center
Achievement: Outstanding research in regulation of immune response by regulatory T cells
Awards: 5 awards including Japan Academy Prize(2012)
http://www.ifrec.osaka-u.ac.jp/index-e.php

NAMBA Keichi,
Professor, Graduate School of Frontier Biosciences
Achievement: Outstanding research in structural and functional analyses of biological macromolecular nanomachines
Awards: 8 awards including Imperial Award and Japan Academy Prize(2012)
http://www.fbs.osaka-u.ac.jp/eng/general/lab/02/

NISHIO Shojiro,
Professor, Graduate School of Information Science and Technology
Achievement: Outstanding research in information science
Awards: 56 awards including Medal with Purple Ribbon(2011)
http://www-nishio.ist.osaka-u.ac.jp/index-e.html

HARADA Akira,
Professor, Graduate School of Science
Achievement: Outstanding research in polymer chemistry
Awards: 3 awards including Medal with Purple Ribbon(2006)
http://www.chem sci.osaka-u.ac.jp/lab/harada/index.html

FUKUZUMI Shun-ichi,
Professor, Graduate School of Engineering
Achievement: Outstanding research in functional materials chemistry
Awards: 7 awards including Medal with Purple Ribbon(2011)
http://www-fchim.mls.eng.osaka-u.ac.jp/

HAMADA Hiroshi,
Professor, Graduate School of Frontier Biosciences
Achievement: Outstanding research in developmental biology
http://www.fbs.osaka-u.ac.jp/labs/hamada/

MIURA Masahiro,
Professor, Graduate School of Engineering
Achievement: Outstanding research in synthetic organic chemistry
Awards: 5 awards including Thomson Reuters Research Front Award(2012), The CSJ Award for Creative Work(2013)
http://www.chem-eng.osaka-u.ac.jp/~miura-lab/index-Eng.htm

‘Osaka University Distinguished Professor’
HandaiGlobal: An intellectual boost to put Osaka University on the world map

HandaiGlobal, the new e-newsletter in English from Osaka University, made its international debut in April 2014. The newsletter offers news, views comments and arguments on current affairs, education and science, and is an ambitious plan to put Japan, Osaka and Osaka University at the heart of the intellectual debate on the leading issues of our time.

The opening issues contained a hard-hitting plea from Mikako Hayashi, Professor of Restorative Dentistry at Osaka University, calling upon government ministers of finance and health to get together and urgently reform healthcare insurance systems before they go bankrupt, damaging people’s lives and government budgets at the same time. She pleads with everyone involved to put the “care” back into “healthcare”. She also suggests that dentistry – which she calls the Cinderella of the medical profession – has a greater and more important role to play in general health than most doctors or administrators recognise.

Professor Rana Mitter, director of the China Centre at the University of Oxford and author of a highly praised book on the conflict between Japan and China 1937-45, also contributes a long and thoughtful interview with advice on how to learn from history.

There is also a useful dialogue between scientists, who want to give advice about science to politicians and government, and officials who return the compliment by pointing out to the scientists that economics and law will always be the top dogs in political debate. For scientists to call for “more research” is the kiss of death.

For lighter relief, you can read about Minami-chan’s fashion advice, and there is also a letter from a resurrected John Maynard Keynes happily chatting in the Nectar Bar of Heaven about the problems on Earth. HandaiGlobal is happy to announce that it has managed to secure the services of Keynes and also of Albert Einstein who will share his modern-day theories with readers.

We believe that this venture is a first not only for Osaka, but also for Japan: our world is global and our quest is to inform, set out the arguments, be a leading source of debate that will help to inform better decision-making. We will interview presidents and prime ministers, Nobel prize winners in the arts and science, men of letters, corporate leaders, and farmers and workers in field and factory to try to inform and challenge, and maybe sometimes infuriate by raising awkward questions. We hope we will be provocative, amusing, sometimes astonishing, but never dull. And we will be a voice from Osaka and Japan in the global debate.

www.handaiglobal.org
Liberal Arts and Sciences

Liberal arts and sciences education is a requisite for cultivating sophisticated judgment, a strong sense of ethics, and international-mindedness in students at Osaka University.

General education at Osaka University is managed by the Center for Education in Liberal Arts and Sciences (CELAS) with the participation of all faculties. The liberal arts and sciences education provided by this center is designed to educate future professionals and scholars who have not only preeminent knowledge in a wide variety of fields, but also demonstrate comprehensive judgment.

For freshmen and sophomores, the liberal arts and sciences education constitutes a significant part of their studies. For seniors and graduate students, this education is also considered crucial in order to help students to balance their specialized knowledge with a broader perspective.

In April, 2012, CELAS was founded to promote a cohesive liberal arts and science education for all students from freshmen to graduate students. General education was previously conducted by several institutions: the Institute for Higher Education Research and Practice (IHERP abolished March 2012), the Graduate School of Language and Culture, the Center for the Study of Communication-Design (CSCD), the Center for Interdisciplinary Research and Education, and the Global Collaboration Center (GLOCOL). CELAS was built in order to conduct our coherent general education through the unification of these institutions and to encourage students to acquire “comprehensive understanding,” “design prowess,” and “transcultural communicability,” which are the educational goals of Osaka University.

Liberal Education Subjects for Freshmen and Sophomores

This group seeks to improve communication skills in an age of globalization and information. The group consists of Foreign Language Education Subjects aimed at enabling students to acquire practical linguistic skills and Information Literacy and Processing.

- **First Foreign Language**
 - Subjects: English

- **Second Foreign Language**
 - Subjects: German, French, Russian, Italian, Spanish, Chinese, Korean

- **Selective Foreign Language**
 - Subjects: English, German, French, Russian, Chinese, Classical Greek, Latin

- **Special Foreign Language**
 - Subjects: Swahili, Mongolian, Burmese, Turkish, etc.

- **Information Literacy and Processing**

First-year Seminar

Students work in small groups on themes provided by their instructor. The students present and discuss their own research: this helps them to develop their basic approach to research activity at the same time as enhancing their creativity and study motivation.

- Subjects: Invention and Discovery, The Art of Questioning, Art and Neuroscience, Nano Science World, Introduction to Information Retrieval, Internet and Copyright, etc. (151 subjects)

Health and Sports

This group aims to familiarize students with the principles and practice of taking care of their own bodies, while enhancing their practical sporting skills, and deepening their scientific understanding of sport.

- Subjects: Sports Activities A, Sports Activities B, Exercise Physiology and Health Science, Sports Activities B

Basic Major Subjects

This group helps students to master the fundamentals needed to undertake the study of specialized subjects. The subjects are divided into those enabling students to understand the basic concepts of each specialty and those dealing with related themes.

- School of Letters, Humanities, Law, Economics Elementary Philosophy, A, Psychological Experiments, Jurisprudence, Economics A, Introduction to Sociological Studies on Social Environment, etc.
- Faculty of Medicine, Dentistry, School of Pharmaceutical Sciences An Outline of Philosophy, Psychological Experiments, Statistics B, Cell Biology A, Graphic Science, School of Sciences, Engineering, Engineering Science Calculus 1, Statistics C, Graphic Science A, Physics Experiments, Science Laboratory 1, etc.
Overview of the School of Letters:

The School of Letters and the Graduate School of Letters include not only traditional disciplines, such as Philosophy, History, and Literature, but also unique fields of study, such as Aesthetics, Science of Literary Arts, and Japanese Studies. Education and research consider the fundamental nature of the human psyche from a broad range of perspectives and ideas through the study of history and culture. There are as many as 20 undergraduate and 27 graduate fields of study. Among these fields are those of rare expertise not commonly found in other universities, such as history and culture. There are as many as 20 undergraduate and 27 graduate fields of study. Among these fields are those of rare expertise not commonly found in other universities, such as Theater Studies, Japanese Studies, Musicology, and Clinical Philosophy.

Interdisciplinary approaches to Japan, Japanese Language, and Japanese Literature:

The School of Letters is renowned for its special fields related to Japan. These fields attract a great deal of interest from foreign researchers and accommodate a large number of foreign students. Japanese Studies is designed not only for understanding Japan as an isolated cultural phenomenon but also for conducting comparative research from a global perspective involving the history of ideas, folklore, religion, and cultural exchange. Students are not bound to any one discipline, and may pursue their interests making use of a range of interdisciplinary tools. Japanese Linguistics is not merely the study of grammar, but it is also the study of Japanese in comparison with other languages. Recent years have seen an increasing interest in the Japanese language in other Asian countries such as China and South Korea, and also in Europe. It is only natural that approximately half of the graduate students in the field of Japanese Studies and Japanese Linguistics come from abroad. Many of these students proceed to the Doctoral Program with the hope of becoming teachers and/or researchers of the Japanese language in their countries.

Japanese Literature deals with works from ancient times to medieval, early modern, and modern times up to the present. In addition to detailed reading of individual works, faculty members have taken various approaches to studying authors of literary works, as well as cultural trends of individual epochs. The research in this field is strongly connected to findings in Art History, Japanese History, and Philology.

Active fieldwork and participation with local communities:

Another distinctive feature of the School of Letters is its active stance towards fieldwork. The school values an empirical approach that urges students to clarify their targets of study by collecting, analyzing, and organizing the relevant literature and data, and then verifying them through fieldwork. While profoundly engaged in special research, both graduate and undergraduate courses proceed with an interdisciplinary style of research through mutual exchange among varied domains. Such joint research activities are not limited to the teaching staff and graduate students on campus. In addition to its various research fields, the School of Letters also operates the Office of Archaeological Heritage Management. Machikanezama, the site of the Toyonaka campus of Osaka University, abounds with ancient relics that date back to the Yayoi period (3rd century BC to 3rd century AD). In cooperation with the Archaeological Department, the office is responsible for the examination of Yayoi-period relics and the storage of unearthed relics and relevant data. Working in cooperation with local communities is another important aspect of this school. One example is the school’s decision to preserve the Kaitokudo, one of the earliest colleges in Osaka in the Edo period. The school operates the Kaitokudo Commemorative Society in cooperation with private organizations. Among the activities the society hosts are biannual memorial lectures given by well-known scholars in spring and fall, and regular classes on classical literature for the general public.

Full-time students from more than 20 countries number more than 100:

The School of Letters encourages international exchange. The teaching staff includes non-Japanese tenured researchers. Some research fellows are also accepted every year (19 researchers in 2013). More than 100 non-Japanese students (136 students in 2013) from more than 20 countries (21 countries in 2013) are registered in this school each academic year. An international liaison board has been set up to coordinate international activities. The international affairs office founded in 1980 offers advice to overseas students on various aspects of their life in Japan. The office also provides chances to experience Japanese culture and is in charge of parties and meetings in which overseas students, Japanese students, and teachers gather to deepen friendships and establish academic ties.
The School of Human Sciences was established in 1972 covering three academic disciplines: psychology, sociology and education. It was the first school or faculty to carry the name ‘human sciences’ in the country. In 1976 the Graduate School of Human Sciences was created offering Master and Doctoral level programs. Today areas of study include behavioral sciences, psychology, sociology, biological and cultural anthropology, education, philosophy, development studies and area studies.

Our main mission in the School and Graduate School of Human Sciences is to contribute to the betterment of societies (local, national and global) by cultivating students who are inquiring and creative thinkers with a strong sense of public service, and by producing high quality research that will help us better understand and thus address the complex social, economic, health and environmental problems that we face in the early 21st century. In this endeavor, we are strongly committed to an interdisciplinary and evidence-based approach.

Graduate School of Human Sciences

Since the Graduate School of Human Sciences was established, it has followed the groundbreaking path of integrating the sciences and the arts conceptually and practically to generate a comprehensive and relevant understanding of human beings and the societies that they create around them. To realize our mission, the Graduate School has emphasized the utilization of empirical, practical, and in some fields, clinical research methodologies that feed directly into the learning environment. The focus is firmly on studying real people and real societies through fieldwork, interviews, and questionnaire data collection. The School also conducts research observing nonhuman primates in their natural environment. In order to provide students and faculty with a cutting edge research and learning environment, we have successfully secured additional support from the Ministry of Education, Culture, Sports Science and Technology (MEXT) for two major projects in recent years: 2005-2007 for the project Human Science Education Aimed at Producing Practical Researchers and 2007-2010 for the Promoting the Use of Human Science Data in General and Professional Education Project. In addition to supporting students in research and other scholarly activities, including funding for international conferences and publications, a number of new courses were developed out of these projects. These include some foundational and advanced courses in quantitative and qualitative data processing and analysis, as well as the popular Academic Writing and Presentation Skills Seminars. Our aim is to further enhance the graduate research environment to enable students to develop to an even higher level generic and subject specific skills that will enable them to contribute to wider society in a variety of fields, as well as social and cultural settings.

Human Sciences All-English Undergraduate Degree Program

In 2011 the School of Human Sciences launched a new program taught entirely in English. The new program aims to cultivate self-motivated and reflective students with a sophisticated knowledge base and the necessary practical skills to meet the challenges that they will face in our fast-changing, globalized world. The program offers students two majors to choose from Global Citizenship and Contemporary Japan. While offering an English language learning environment in the classroom, students will also be given an opportunity to begin learning or improve their Japanese language skills.

Global Citizenship Major

The Global Citizenship Major is a degree program that explores the limits and potential of citizenship in a world of massive global migration and huge demographic shifts within nations and communities. This major is particularly aimed at those students who are hoping to work in international agencies and Corporate Social Responsibility (CSR) sections of global and Japanese businesses. Students will have a solid grounding in how to ethically identify, investigate, analyze and advocate solutions to problems of a multidimensional and global nature.

Contemporary Japan Major

The Contemporary Japan Major is an area studies program that takes multidisciplinary and interdisciplinary approaches to studying Japan. While focusing on Japan as an area of study, this program also aims to reflect on the process of globalization. The approach taken will enable students to gain an in-depth understanding of the social, cultural, economic, political and linguistic aspects of the country. We expect that students will be able to integrate a variety of approaches to formulating and solving problems, and utilize diverse materials and information sources to investigate different issues pertaining to Japan and its position in the region and world. Graduates of the Contemporary Japan Major, as area studies specialists, will be well placed to seek employment in Japan or the wide globalized job market.
“Culture through Language, Language through Culture”

Learning culture through language and learning language through culture—that is the core of what it means to do foreign studies. One without the other is never complete. We teach both language and culture. The School of Foreign Studies is an ideal place for those of you who aim to become experts in both.

Educational Goals

Our goals are to promote education and research in foreign languages and cultures, both in theory and practice, to instill broad knowledge in the students so that they can contribute to the world community, and to nurture their deep understanding of foreign affairs.

To achieve these goals, SFS offers 25 modern languages as majors and many other ancient and modern languages as minors. During the first and the second years, the students are to take one foreign language as their major language, together with core introductory subjects in various academic disciplines. In the final two years they will study their major language at a more advanced level, along with a problem-oriented research related to a particular academic discipline of their choice.

Historical Description

The School of Foreign Studies (SFS) was first established in December 1921 as Osaka School of Foreign Languages at Uehonmachi, Osaka, committed to international peace and amity. It was financially helped by the donation of ¥1,000,000 by Choko Hayashi, an Osaka businesswoman. Having survived the Second World War, it moved to Takatsuki and then back to Uehonmachi, Osaka. In 1979 it moved again to a new location in Minoh City for more extensive academic activities. On October 1, 2007, it became part of Osaka University as School of Foreign Studies.

“Let Language be your Wings to the World”

What is “Foreign Studies”? Why are we not just called “School of Foreign Languages”? Well, there are good reasons.

Globalization has been going on in many ways; people, capital, and information, they never stay put in a single place but circulate on a global level. We witness changes in businesses, politics, and cultures almost on a daily basis. The changes certainly are not taking place just at remote places far from where we live. They are right in front of us and all around us, and we are in the middle of them, be it in our workplaces, in our neighborhoods, or in our city streets. Look around. Visible signs are everywhere. We see an increasing number of people of different nationalities or cultural backgrounds every day and everywhere. Japan is in the middle of all this, as many other countries are, and that is what it means to be living in today’s world—internationalization within and without.

Within—as different cultures come into contact or even mingle together, our minds and attitudes get influenced and become richer in kind, our ways of living improve, and many other not immediately foreseeable good things may take place. Yet, at the same time, we may witness frictions, pressures, and collisions because of cultural differences. The more multicultural we become, the more need there will be for people who can act as cultural bridges, whose job it is to help different peoples understand each other.

Without—these days, military conflicts arise almost routinely in many parts of the world, or poverty strikes, and environmental problems beleaguer many nations. Consequently, there is need like never before for coordinated global cooperation and aid through international organizations, governments and NPOs. In turn, these groups need employees who can function in at least two languages and cultures if they are to help different peoples work together.

Within and without, there is a need—urgently felt—for more qualified people to help those of different cultural backgrounds and nationalities understand each other and communicate with each other. Locally and internationally, we need people who have a deep understanding of both language and culture.
The Faculty of Law offers an undergraduate program, officially called the School of Law. The Faculty of Law also offers a graduate program, officially called the Graduate School of Law and Politics. As a leading academic institution in both legal education and research, we aim to contribute to the wider society by developing human capital, ideas, and intellectual innovations that are essential for evolution and increasing welfare everywhere.

Solid Tradition and Innovative Spirit

The Faculty of Law has a solid tradition that goes back 60 years. The Faculty of Letters and Law was established at Osaka University in 1948, only three years after the end of World War II. Five years later, in 1953, as part of a fundamental restructuring of the university, the Faculty was divided into three separate faculties, being the faculties of Law, Letters and Economics. Since then, the Faculty of Law has developed steadily, maintaining a healthy respect for both tradition and innovation as it has grown. Now the Faculty of Law, which started with only 16 professors in 1953, has about 40 full-time professors and is widely recognized as one of Japan's top-ranking institutions for legal education and research. In 2008, the Faculty celebrated its 60th Anniversary.

The Faculty of Law offers an undergraduate program, officially called the School of Law. In 2008, it was divided into two departments, the Department of Law and the Department of International Public Policy. Two hundred and fifty students enroll every year and the student faculty ratio of the program is ideal. The Faculty of Law also offers a graduate program, officially called the Graduate School of Law and Politics. Currently, there are 100 students in the master's program, of which 28 are international students, and there are 43 students in the doctorate program, 10 of whom are international students. The master's program of the Graduate School of Law and Politics consists of three sub-programs with different goals and curricula: Public Law and Policy, Comparative Law and Politics, and Intellectual Property Law. As a leading academic institution in both legal education and research, we view it as one of our missions to contribute to the wider society by developing human capital, ideas, and intellectual innovations that are essential for evolution and increasing welfare.

Toward a Globally Attractive Law School

The School of Law and the Graduate School of Law and Politics are actively promoting international exchanges with fifteen prestigious law faculties around the world based on inter-faculty academic exchange agreements. Among the most essential objectives of these agreements is to expand the student exchange program. Every year, the School of Law and the Graduate School of Law and Politics attract a large number of international students, from other Asian countries in particular, those who are interested in acquiring knowledge of Japanese law and adapting it for use in their own countries. We are currently working to offer more courses on Japanese law taught in English in the spring semester, so that more students may obtain easier access to the Japanese legal system and legal culture. Courses such as “Japanese Legal/ Political System and Culture,” “Topics in Japanese Law,” and “Topics in Comparative Law” are scheduled for the 2013 spring semester. Many Japanese students also attend the courses taught in English, and these courses provide a forum for interaction and exchange of ideas among students from Japan and those from abroad that matches the mainstream classes taught in Japanese. To meet the needs of international students, the School of Law and the Graduate School of Law and Politics have set up an International Student Consultation Room. Here, an experienced counselor, who are in charge of taking care of international students, provide advice and support upon request, on issues such as their research and everyday studies as well as personal issues or problems relating to life off campus. This helps students to focus on their studies safe in the knowledge that a system exists to assist them if problems occur. In addition, we have an assigned tutor system. Each new international student will be provided with his or her own Japanese undergraduate or graduate student as a tutor who can provide assistance with the academic demands of the program.
The Graduate School of Economics at Osaka University has placed Modern Economics at the core of its education and research program since its inception, and has consistently been at the forefront of studies in Modern Economics. Because of its many cutting-edge achievements, it has come to be known as the Place of Origin of Modern Economics in Japan. The School offers undergraduate and graduate programs. The undergraduate program features a systematic curriculum that allows students to choose from the disciplines of economics and business. The School offers two kinds of graduate programs: one aims to foster excellent researchers in economics, economic history, and management and business; and the other aims to nurture human resources that are indispensable to acquire a cosmopolitan outlook in response to the economic globalization. The Graduate School operates in an environment conducive to internationalization of students. In the field of economic history, the School has enjoyed some detachment from scholarly dogma, adhering to our firm belief in empirically based historical science, which rests on documentary proofs and scientific analyses. As a result, the School has a reputation as a world-class research organization.

Introduction and Overview

The School of Economics at Osaka University was founded in 1948. At that time, so-called “Marxian Economics” was the mainstream paradigm in Japan. However, the School has placed Modern Economics at the core of its education and research program since its inception, and has consistently been at the forefront of studies in Modern Economics. In regard to management and business studies, the School has been spearheading the field of management science with the most advanced analytical and mathematical techniques. In the field of economic history, the School has enjoyed some detachment from scholarly dogma, adhering to our firm belief in empirically based historical science, which rests on documentary proofs and scientific analyses. As a result, the School has a reputation as a world-class research organization.

The Graduate School of Economics at Osaka University demonstrates its academic excellence by publishing the latest findings to the world. The Institute of Social and Economic Research, which plays an important part in the graduate program, edits one of the world’s most authoritative economic journals, the "International Economic Review," in collaboration with the University of Pennsylvania.

Undergraduate program

The School of Economics at Osaka University features a systematic curriculum that allows students to choose from the two disciplines of economics and business administration. Following the tradition of learning practically, emphasis is placed on quantitative methods such as statistical analysis and information processing to promote empirical education and research. Course subjects are offered in suitably small classes, which is one of the most attractive features of the school. The School offers rich academic resources that are unique among undergraduate economics schools. The four-year undergraduate program consists of widely integrated economics and business administration courses with liberal arts and sciences, leading to the Bachelor of Science in Economics degree.

Graduate program

The Graduate School of Economics offers two major programs: Economics, and Management and Business. The School provides three courses: Economics, Applied Economics, and Economic History and Business History as the Economics Program. The Economics Course, the Economic History and Business History Course are designed to nurture excellent academic researchers and feature the study of Modern Economics as well as economic history and business history with emphasis on the quantitative approach, creativity and rigor in logic. The Applied Economics Course is designed for those who wish to pursue careers as economists or analysts outside academia and it aims to foster the ability to apply the tools of Modern Economics to the analysis of real-world problems.

The Management and Business Program emphasizes corporate management through a scientific approach. This Program aims at training students not only to become top researchers through the Management Research Course, but also analytical specialists who can play vital roles in the business world through the MOT Course, the Business Course and the Global Management Course. Notably, the three-year MOT Course, offered jointly with the School of Engineering, allows students to obtain two master degrees, in engineering and business, at the same time. In 2008, we started a new area of research in the Major of Management and Business: the Global Management Course, which aims to foster capable individuals who have a thorough grounding in global perspectives and strong management skills to manage urban and regional developments as well as technological advancement.
Mathematics originated in the prehistoric age, from the need of handling concepts like numbers, magnitudes, and forms, and has been developing ever since. On the one hand, mathematics develops for its own sake, without aiming at specific applications. Meanwhile, because of its abstract and logical nature, mathematics is the foundation of various other disciplines, including the natural sciences, engineering, medicine, and the social sciences. In reality, there is no clear dividing line between pure and applied mathematics, and their interaction sometimes brings us unexpected breakthroughs.

The department of Mathematics consists of 6 research groups, all of which have been making substantial contributions to the developments of mathematics. Our department is ranked among the top three in the country. The Department of Physics is one of the oldest in Osaka University. There have been many distinguished physicists existing in the Department: such as Dr. NAGAOKA Hantaro, who was known by his atomic model, was the first president of Osaka University. Dr. YUKAWA Hideki received the Nobel Prize for the meson theory when he was a lecturer at Osaka University. Dr. NAMBU Yoichiro, who was also awarded the Nobel Prize in Physics 2008, has been a Guest Professor at the Department. This great tradition continues in a wide variety of world-level researchers in the department focus on molecular design, synthesis, and characterization of novel compounds with specific functional interest in order to solve these problems.
The Faculty of Medicine comprises the Medical School and the School of Allied Health Sciences. Whilst the Medical School offers 6-year courses for future doctors, the School of Allied Health Sciences provides 4-year curricula in Nursing, Radiological Technology and Biomedical Engineering as well as Laboratory Sciences for prospective Nurses, Public Health Nurses, Midwives, Radiology Technicians and Laboratory Medical Technologists. The Medical Science Department trains proficient experts in Medical Professional Jobs such as Doctors, Nurses, Radiological Technicians, and Laboratory Medical Technologists who can provide increasingly sophisticated treatment appropriately and accurately as a team.

Promoting “Medical Care Team” has become essential to Medical Practice. The Medical School produces highly competent doctors who are able to diagnose and treat patients accurately. The School of Allied Health Sciences is committed to training highly competent Nurses, Radiology Technicians and Laboratory Medical Technologists who are able to work side by side with doctors.

World-leading Pioneering Research

Graduate School of Medicine produces numerous world-acclaimed research results, as well as outstanding researchers. In addition to an exceptional number of Grants-in-Aid for Scientific Research being awarded to our students by the Ministry of Education, Culture, Sports, Science and Technology and the number of Contract Research, Joint Research and Donation for Research and Education from private companies accorded to our researchers. In addition to an exceptional number of world-acclaimed research results, as well as outstanding researchers. In addition to an exceptional number of Grants-in-Aid for Scientific Research being awarded to our students by the Ministry of Education, Culture, Sports, Science and Technology and the number of Contract Research, Joint Research and Donation for Research and Education from private companies accorded to our researchers.

Responding to Globalization

Graduate School of Medicine is particularly proud of its cutting edge research in such fields of study as Immunology, Molecular Cell Biology, Molecular Genetics, Microbiology, Neuroscience, and Gene Therapy Science. Therefore, our Medical Graduate Course actively invites foreign researchers, promotes Joint Research and calls for foreign students to come and study at our facilities. Furthermore, in the spirit of academic exchanges and international collaboration, we participate and actively promote international personnel exchanges. We especially like to welcome foreign researchers under Joint Research programs with overseas Universities and Institutions.

The international exchange program of Graduate School of Medicine, Osaka University grows every year. The department invites foreign researchers, sends faculty members abroad and promotes various international exchange programs, such as overseas studies for Osaka University graduates and undergraduates. It also welcomes overseas students.

As part of international exchange, the School has established an International Exchange Fund for overseas students and students who have stayed on after their term of study expired. In addition, the School promotes Joint Research with overseas researcher. In addition, we have set up an International Exchange Grant for young researchers, such as graduates willing to study at foreign universities or research institutes. Additionally, in an effort to nurture physicians with broad international experience, we offer our students an opportunity to follow courses at overseas medical institutions and strongly promote international exchanges.

Graduate School of Medicine, Osaka University has an interdepartmental exchange agreement with overseas universities. Participating universities and institutions are currently establishing Joint Research programs, as well as exchange programs available to researchers and students. Furthermore, the Academic Exchange Program set up between Osaka University Graduate School of Medicine and a number of foreign universities and institutions, allows selected graduate and undergraduate students to receive research guidance and follow courses overseas for up to one year without losing an academic year.

Helping Mothers Raise Twins and Triplets

Providing Childcare Guidance in Cooperation with Community Health Nurses

As more women are being treated for infertility, there has been an increase in multiple births, which for some parents can multiply the problems associated with child rearing and childcare.

Professor HAYAKAWA is in charge of the field called Health Promotion Science, which is closely related to work at health centers. The scope of Health Promotion Science is broad, covering child rearing, child abuse counseling, the prevention of food poisoning, and homecare of people with incurable diseases.

Professor HAYAKAWA’s reason for studying childcare in relation to multiple births, like twins or triplets, is that it brings into sharp focus the problem points of government policy regarding mothers and childcare. Professor HAYAKAWA, communicating with mothers of twins and triplets belonging to the Mothers of Twins Club, has been conducting practical studies on the problems associated with caring for twins or triplets.

Furthermore, based on these activities for twins and triplets, Graduate School of Medicine established the Center for Twin Research as the first center in this kind in Japan for promoting twin study from infancy to later adulthood.

Graduate School of Medicine – Nursing

- Fundamental Nursing
- Reproductive and Pediatric Nursing
- Adult and Geriatric Nursing
- Community Health Nursing

Graduate School of Medicine – Medical Physics and Engineering

- Medical Physics
- Medical Engineering

Graduate School of Medicine – Medical Sciences (Master Course)

- Health Sciences Nursing Science
- Evidence-Based Clinical Nursing
- Children’s and Women’s Health
- Health Promotion Science

Faculty of Medicine

- Medical School
- School of Allied Health Sciences
- Nursing
- Fundamental Nursing
- Reproductive and Pediatric Nursing
- Adult and Geriatric Nursing
- Community Health Nursing
- Medical Physics
- Medical Engineering

- Medical Physics and Engineering
- Laboratory Sciences
- Basic Laboratory Sciences
- Clinical Laboratory Sciences

Graduate School of Medicine – Medical Sciences

- Medicine
- Anatomy
- Physiology
- Neurosciences
- Biochemistry and Molecular Biology
- Pathology
- Pharmacology
- Molecular Therapeutics
- Medical Engineering
- Social and Environmental Medicine
- Microbiology and Immunology
- Medical Genetics
- Health and Sport Sciences
- Internal Medicine
- Integrated Medicine
- Radiology
- Health Sciences Nursing Science
- Evidence-Based Clinical Nursing
- Children’s and Women’s Health
- Health Promotion Science
- Medical Physics
- Medical Engineering

- Surgery
- Acute Critical Medicine
- Organ Regulation Medicine
- Neural and Sensory Organ Surgery
- Pharmaceutical Information
- Infection Control and Prevention
- Functional Diagnostic Science
- Medical Physics and Engineering
- Biomedical Informatics
Dentistry

The School/Graduate School of Dentistry have been engaged in producing leading dental professionals who have research-oriented mind and perform an important role in global dental society. We are committed to continue exploring the new technologies and developments in oral science in the 21st century. We are extensively focusing on the innovative dental research philosophy “Frontier Bio-Dentistry”, that implies fusion of traditional dentistry and the molecular/cellular biology-based sciences. We aim to develop the advanced dental care through tissue regeneration based on biological principals and establish personalized therapies. Our research achievements are internationally well-known and we continuously obtain high prestige. The project “Challenge to Intractable Oral Diseases” is one of our recent attempts to develop new diagnostic/preventive/treatment methods for refractory oral diseases in the modern medicine.

Dental Research in the 21st Century

The mouth can be called “the entrance” to a living organism. Eating, speaking and facial expressions performed by the maxillo-facial system are indispensable not only for life maintenance but also for psychosocial health. Most people may think that dentist is a practitioner skillfully drilling and filling the teeth and may have a mental image of dentistry as a kind of art. However, such ideas are out-of-date. Molecular biology techniques introduced in the 1980s have brought new understanding of life phenomena in terms of molecular function. As a result, dental research has drastically changed, with inclusion of new challenges to research of molecular functions as well as understanding of the phenomena of heredity, immunity, and neurology at the molecular level. Thus, modern dentistry now includes the field of bioscience. In addition, high-profile regenerative medicine (medical procedures used for regeneration and reconstruction of lost tissue) has greatly advanced in dental fields. Genomic dentistry also has the great potential for development in the foreseeable future. Oral function is indispensable for humans to have a satisfactory and happy life. Future developments in dental research will search for solutions for not only dental caries and periodontal diseases but also problems related to eating and speaking, which are largely concerned with quality of life. We aim to provide dental health care that allows our patients to have “a better life, to eat and live better,” which is more than simply treating dental diseases.

“Frontier Bio-Dentistry”, a paradigm shift in Dentistry

Osaka University Graduate School of Dentistry has set the large goal of not only training skillful clinicians, but also producing leading researchers in the most advanced areas of oral health care. We aim to realize a “better life, to eat and live better” for our patients by promoting and developing bioscience research projects, and to bring a paradigm shift in dentistry. With these missions in mind, we are pushing forward the projects to create an advanced field of dentistry, which we name “Frontier Bio-Dentistry”. This means a fusion of traditional dentistry, with its focus on technical aspects, and molecular/cellular biology-oriented oral sciences. Our research has attained the highest level in Japan and our school is one of the top five oral research institutes in the world. Taking advantage of the position as a graduate school belonging to a large university, we are actively engaged in joint research projects with other schools and research institutes, such as Medicine, Engineering, and Frontier Biosciences in our university. In addition, a special project termed “Challenge to Intractable Oral Diseases” was inaugurated in 2011. This project aims to create a new field of predictive dentistry by promoting research on development of new diagnostic methods for refractory diseases, as well as developing novel preventive methods for dental caries and periodontal diseases through analysis of the relationships between intractable oral diseases and systemic illness at a molecular level.

Based on such background to focus on “Frontier Bio-Dentistry”, Osaka University Graduate School of Dentistry provides an outstanding environment for those who are interested in bioscience study.
Pharmaceutical sciences is an academic discipline with the mission of helping to develop a bountiful society through comprehensive scientific research into the chemical substances which are related to all kinds of life on earth, and by contributing to the health of humanity through the creation of pharmaceuticals. At human history, many diseases have been overcome by the developments of new medicines and treatments. Pharmaceutical research has mainly contributed to these advances. The School and Graduate School of Pharmaceutical Sciences at Osaka University aim to educate and train future leading pharmacists with a researcher’s mind or world-leading researchers to produce novel drugs successfully.

Pharmaceutical Sciences to Improve Human and Welfare through Drugs Challenge to Post-Genome Science in the 21st Century

Drugs and human being have long shared a mutually beneficial relationships. Humans have experienced, chosen and used natural drugs derived from animals, plants and mineral for several thousands of years. The 20th century was the era when fine chemistry developed remarkably on the basis of organic chemistry and physicochemistry, which resulted in the dramatic improvement of technology to produce novel drugs successfully.

In addition to such chemical pharmaceutical sciences, biopharmaceutical sciences are necessary to understand pathological condition and medicinal effects on the molecular level, which help us explain how drugs and their targets interact in the body.

Furthermore, development of biotechnology makes it easy to prepare large amounts of physiologically active substances whose concentration in vivo might be extremely low.

However, there are still many diseases that are difficult to cure with drugs: these intractable diseases include not only cancer and AIDS, but also hypertension, heart disease and diabetes, in addition to senile dementia. People long for specific medicines prescribed towards these invertebrate diseases. Since the entire human genome has been deciphered, we will hopefully be able to unveil the function of each gene and molecular basis of pathophysiology.

Such rapid evolution of genome science further assists the revolutionary advancement of drug development. Novel research fields, such as computer-based molecular design, genome informatics, and drug delivery systems will also accelerate it.

Moreover, pharmaceutical sciences are expected to solve various environmental problems, since chemicals in our environment and ecology are closely related to human health. Thus, the pharmaceutical sciences will be a very attractive study area for coming generations willing to contribute to the health and welfare of human beings. Finally, it should be noted that we started two new Departments in our Faculty in 2006: one, the “Department of Pharmacy” where future researchers in the field of medical pharmacy and pharmacists are educated, and the other, “Department of Pharmaceutical Sciences” that trains specialists who can take active roles in various areas with their knowledge of drugs.

Individual Guidance to Meet the Needs of Students from Abroad Studying with Students from a Broad Range of Nations

Every year there are about 20 students from about ten nations, mainly in Asia, studying at the School of Pharmaceutical Sciences. Over 90 percent of these students are in the Graduate School, pursuing research in their respective fields. Individually supported by Japanese students as tutors, they engage in the research activities as a member of the laboratory.

The supervisors of each student emphasize individual support to meet each student’s objectives and wishes. At the same time, there is a need to provide a common education in an efficient manner, and the School of Pharmaceutical Sciences International Students Committee was formed to handle education programs for the students from abroad.

Supervisors provide advice in Japanese on the research conducted by students starting at the preparation stage of a thesis. The students present the results of their research in Japanese, and this is followed by a discussion by instructors and students. In this way, they learn how to write their theses and discuss, all in Japanese.

There are also research seminars and discussion held in English by instructors of researchers. The aim is to allow those students, whose ability to use Japanese is limited, to acquire advanced knowledge about pharmacology efficiently through education in English, the international language.

The School of Pharmaceutical Sciences hopes to further expand the circle of international exchange by attracting students from not only Asia, but a broader range of nations.

At present the School has signed exchange agreement, on the faculty level, with the College of Pharmacy of the University of Arizona, in the U.S.A., with which there is an active exchange of students and researchers, and seminars and symposiums held in each location.
The School of Engineering of Osaka University has a history of more than a hundred years, and has sent a lot of students into the society who are now playing a leading role in the various fields of academy and commerce in Japan and abroad. The School and Graduate School feature students and faculty members with unique personalities and outstanding originality. In order to develop the School and Graduate School into world-class institutes, faculty members are working to realize the following three visions: ① Trustworthy education, ② Unparalleled intellectual achievement, ③ Contribution to society through education and research valued by society.

The Division of Advanced Science and Biotechnology consists of the Department of Material and Life Science and the Department of Biotechnology. The division provides a wide spectrum of advanced research and educational opportunities in newly developing interdisciplinary research fields encompassing biology, chemistry and physics, in the effort to resolve the most important global problems concerning energy resources and sustainable environments.

The Division of Applied Chemistry offers two research courses, consisting of seventeen core labs and five cooperative groups. The division aims at cultivating students’ creativity and originality. Students are also trained, through a series of lectures and thesis projects, to become acquainted with comprehensive chemistry and adjacent fields, as well as the latest methods for creating molecules and materials.

The Division of Precision Science & Technology and Applied Physics conducts advanced and creative research/education in the areas of system engineering, control and power engineering, advanced electromagnetics, energy engineering, information and communication technology, and quantum electronic device engineering. In addition, as a full-time international program in collaboration with affiliated universities in Europe, the division offers the Master’s on Photonics NETworks engineering (MAPNET) course.

The Division of Sustainable Energy and Environmental Engineering is intended to conduct engineering education and research that support the sustainable civilization of human society, and consists of 13 basic areas and 9 cooperation and partnership areas or courses, integrating the Department of the Environmental Engineering, the Department of the Energy Engineering, the Department of the Global Architecture and related departments.

As of October 2013, more than 500 international students enroll at the School and Graduate School of Engineering, and the school has established academic exchange agreements with approximately 50 universities (School to School Agreement) to promote international exchanges. The Center for International Affairs (CIA) offers support and advice for international students and for Japanese students wishing to study abroad. It also conducts “English for Engineering” courses aimed at developing students’ international communication skills.
School of Engineering Science

- Electronics and Materials Physics
- Chemistry and Chemical Engineering
- Mechanical Science and Biomedical Engineering
- Systems Science
- Intelligent Systems Science
- Biophysical Engineering
- Information and Computer Sciences
- Computer Science
- Software Science
- Mathematical Science

Graduate School of Engineering Science

- Materials Engineering Science
- Quantum Physics of Nanoscale Materials
- Synthetic Chemistry
- Molecular Organization Chemistry
- Chemical Reaction Engineering
- Environment and Energy System
- Bioprocess Engineering
- Frontier Materials
- Dynamics of Nanoscale Materials
- Mechanical Science and Bioengineering
- Mechanics of Fluids and Tissue-fluids
- Mechanics of Solid Materials
- Propulsion Engineering
- Mecha-informatics
- Biomechanical Engineering
- Biophysical Engineering
- Biomedical and Biophysical Measurements

Statistical Science

Professor Shimodaira in Division of Mathematical Science is working on statistical science, machine learning, and bioinformatics. His laboratory and network labs constitute one of the largest research groups of statistical science in Japan, covering wide range of research fields including data science and mathematical and statistical finance. In particular, he has been working on a computer simulation method, called bootstrap resampling, for assessing confidence level of complicated data analysis. He proved mathematically a unique theorem bridging the two statistical approaches, called Bayesian and frequentist. The new statistical procedure turned out to be very useful in analyzing DNA sequences, and the four key papers have been cited more than 5000 times world wide, mostly from life sciences. Another challenging topic in his lab is statistical analysis of complex networks. Students from Bangladesh and Vietnam, as well as past students from China, Korea and Canada, play important role in his lab.

Multidisciplinary Research Laboratory System for Future Developments (MIRAI LAB)

With its rich experience in developing newly emerging interdisciplinary fields, the Graduate School of Engineering Science established in 2002 a unique system called the Multidisciplinary Research Laboratory System for Future Developments (MIRAI LAB) which supports and incubates various research projects which are aimed at the future development of creative research fields as well as the education of young researchers and engineers with global standards of knowledge and expertise in these fields, in cooperation with conventional basic engineering science. Selected research projects in 2012 are:

- Development and application of the real-time local chemical evaluation method using them for application to drug discovery
- Development of small tissues with cell-to-cell interactions and evaluation method using them for application to drug discovery
- Rare-metal free white light-emitting diodes of silicon-based nanomaterials
- Terahertz frequency-domain spectrometer: a tool for protein dynamics
- Understanding of mechanism in megakaryocytic differentiation of hematopoietic stem cell for enhanced platelet production
- Development of new catalytic system by using cooperative effect
- Development of Functionalized Biomolecular Molecules Based on Nucleic Acid Aptamers
- Development and application of the real-time local chemical stimulation system for cell analysis
- 3-D Surface Reconstruction from a Sparsely Point Set Based on Texture Synthesis

What is the Graduate School of Engineering Science? Where is the Graduate School of Engineering Science going?

Since its foundation in 1961, our faculty has continuously created interdisciplinary research fields congruent with social needs, and has made a great contribution to academia and industry through research and education, emphasizing our cardinal motto: “The faculty, aiming at devoting the fundamental developments of technology through a fusion of science and engineering, contributes to the creation of the true culture of mankind”.

In April 2003, the Graduate School of Engineering Science started its new history. All departments were comprehensively reorganized into three new departments: Materials Engineering Science, Mechanical Science and Bioengineering, and Systems Innovation, in order to adjust and contribute to new frontier and future research fields in the multi- and inter-disciplinary areas. The new, challenging themes of these three departments are “fusion of physics and chemistry”, “fusion of bioengineering and mechanics”, and “fusion of humanity and engineering”, respectively, with a strong faculty-driven orientation in multidisciplinary research and education.

The School of Engineering Science has ten courses and provides a characteristic curriculum based on basic subjects (mathematics, physics, chemistry, biology, informatics) for cultivating wider viewpoints and the flexibility to foster new ideas.

Fusion of Chemistry and Biology

Living organisms are made up of various organic molecules, and life is a series of chemical reactions. Professor Iwai’s group in the Division of Chemistry, the Department of Materials Engineering Science, is aiming at elucidation of various phenomena of life from a viewpoint of chemistry. Molecular recognition and reaction mechanisms of nucleic acids and proteins, especially in the field of DNA repair, are major subjects, and applications of the findings to the development of functional molecules that can be used for medical research are also intended. Based on several original methods of DNA synthesis, many collaborative studies with domestic and foreign research groups have been conducted. Approximately 15 students, including an overseas student belonging to the Global 30 International Program, are actively involved in the research projects.

Mechanics of Fluids and Thermofluids

Energy and environmental problems are one of key issues that our society is now facing. Mechanics of fluids and thermofluids can contribute to solution of the problems in various ways not only by reducing energy losses in generating propulsion and power but also by creating novel systems exploiting solar and geothermal energy, waste energy or unexploited natural resources. Professor Seguchi’s group in the Division of Nonlinear Mechanics Department of Mechanical Science and Bioengineering is studying thermosociotics, i.e., waves and oscillations which occur spontaneously in a gas in contact with a solid wall under temperature gradient. Because the phenomena convert ambient thermal energy to mechanical energy of gas oscillations, they are expected to be exploited as novel heat engines. But very difficult “nonlinear problems” must be solved to analyze and predict them quantitatively. The group is now grappling with the problems, aiming at putting the heat engines to practical use.

Worldwide Interdisciplinary Course in English for International Students

The Graduate School of Engineering Science welcomes not only researchers from overseas universities but also students from overseas to whom the Graduate School offers Master and PhD Courses (full-time) taught in English, as well as short-stays as internship students for a couple of months or semesters (FrontierLab program and short-stay program supported by JASSO). For promoting the acquisition of a cosmopolitan outlook and improving the communication ability of Japanese students, all departments provide a series of lectures and colloquia in English and a short visit program supported by several financial sources such as JASSO and JSPS.

Our School's international activity is carried out by increasing the number of Academic Exchange Agreements with more than 27 internationally distinguished universities in Germany, France, U.S.A., China, and so on; are involved in international collaboration, and a lot of students are studying abroad for short-term with this tuition-free exchange scheme.

The international students currently enrolled in the Graduate School of Engineering Science represent 23 nations from around the world. The Advisement Office for International Students of the School of Engineering Science offers consultations and support services to the students in their daily life and studies, and hosts a variety of events every year.

It is our hope that all students studying here will grow up to be leaders accepted worldwide.
Language and Culture

Expanded and Reorganized in 2012

The Graduate School of Language and Culture was established in 1989 as the first graduate school in Japan that specializes in this field. It was expanded and reorganized into seven courses in 2005. In 2007, to better adapt itself to social changes in Japan and the world at large, the School was extended to two divisions. The newly established Division, the Division of Language and Society, has its origin in the Graduate School of Integrated Studies in Language and Society, established in Osaka University of Foreign Studies in 1997. In 2012, the School was expanded and reorganized into three divisions, with the new Division of Japanese Language and Culture.

Admission of International Students

The Graduate School of Language and Culture opens its door widely to international students so that it will produce high-level professionals and researchers who can meet the demands of the world of the 21st century, which will no doubt be characterized by intensifying globalization on one hand, and multi-linguistic and multiethic social environment on the other. International students admitted to the School numbered 151 in 2011, 160 in 2012 and 163 in 2013, with students from Asian countries constituting the majority.

Fusion of Linguistic and Scientific Research, Language and the Human Mind

One of the most important research programs pursued at the Division of Language and Culture is to explore relationships between language and the human mind, with a special reference to cognitive linguistics. It is also a leading institution in corpus linguistics. It investigates various aspects of language by using computers to process an enormous amount of linguistic data.

Among the related areas of research are theoretical and applied linguistics, communication studies, sociolinguistics, and information sciences of language.

Navigating between Globalization and Localization Pioneer Studies in Language and Culture

An equally important research program of the Division is to investigate the complex relationships between language, culture and society in the present-day world.

The world of today involves a tension between two forces: on the one hand, its culture is becoming more uniform and homogeneous under strong influences of globalization, but on the other hand, multi-linguistic and multi-ethnic tendencies are being accentuated in many parts of the world. In order to face up to these problems, and to explore the productive ways to overcome them, the Division of Language and Culture is engaged in various educational and research programs, such as Language and Culture in International Relations, Comparative Studies in Language and Culture, Transnational Cultural Studies, Gender Studies, and Media Studies.

The main objective of the Division of Language and Society is to explore languages of the world and cultures and societies based on these languages. Its two courses aim to pursue an advanced study in this field, to facilitate students’ research, and moreover, to provide them with high professional skills.

The Graduate School of Language and Culture focuses mainly on two areas—Asia and Africa, and Europe and America. Faculty specializing in these areas investigate a variety of subjects taking a world-wide perspective: foreign languages, cultural representations, language and cultural resources, and languages and societies. The course offers a wide range of subjects such as a Special Seminar in Japanese Language and Culture.

Toward the Innovation of Education in Language and Culture

Another important activity of the Graduate School of Language and Culture is to explore new frameworks and methodologies for education in language and culture, and to put them into practice. On the basis of the researches mentioned above, the School seeks to provide new perspectives and methods of language education (for example, computer assisted language education and e-learning), and to put them into practice in language classes given to the students of Osaka University. All of the staff members of the School participate in language teaching in the University.
OSIPP Offers a Unique Program Designed to Train Students to Become Policy Experts and Skilled Professionals

The Osaka School of International Public Policy (OSIPP) was founded to facilitate research on issues and policies that transcend national, cultural, and any other kind of boundaries that divide us, and on the actions that will be necessary to preserve the lives and aspirations of people around the world. Another mission of the School is to foster the development of policy experts and skilled professionals who are dedicated to improving public welfare at all levels, from the local to the global. We train our students to acquire cross-disciplinary knowledge and advanced analytical capabilities to resolve complex social problems, in ways that are creative, level headed, and empathetic to the situations of others.

Producing Future Leaders

Knowledge and ideas that go beyond the conventional framework of existing disciplines are indispensable qualities for meeting the demands of a rapidly advancing borderless world, and for solving increasingly complex international problems. It is the mission of OSIPP to train students to become professionals with specialized knowledge and leadership skills to meet these demands, and to carry out path-breaking interdisciplinary research. OSIPP brings together academic staff specializing in both theory and applied knowledge, as well as representatives from international organizations, government, the media and private think-tanks, in order to educate students and researchers to become active leaders in the international arena. In addition to core courses where students obtain a basic knowledge and understanding of methodologies, and seminars on more concrete topics, OSIPP offers classes which focus on providing students with hands-on learning experience.

Examples of such hands-on classes are a negotiation class where students actually practice negotiation skills through case studies, a class where project implementation and leadership in organizational operations are addressed both theoretically and practically, and a class for obtaining internship experience.

Flexible Curriculum

Two majors are currently offered: International Public Policy and Comparative Public Policy. The International Public Policy major is committed to research and education covering public policy matters in the international community, such as law and diplomacy, international politics and security, human rights, international finance, trade and economy, development and environmental issues. The Comparative Public Policy major focuses on research and education relating to a comparative analysis of the international community, as well as policy issues that are relevant to Japan’s political, legal, and economic systems. Students, regardless of their major, are free to choose their supervisor and courses from among the array of professors and courses from either major. Credit exchanges with other graduate schools of Osaka University and with other universities (universities who are party to academic exchange agreements) are also available. For the OSIPP entrance examination, students are required to demonstrate English proficiency, submit a written research proposal, and be interviewed by faculty members. Enrollment for the Master’s and Ph.D. programs is held in April, although Ph.D. students are also permitted to enter in October.

Academic Staff

The faculty members of OSIPP are active in the academic world and renowned in their respective fields. They have diverse academic backgrounds, such as economics, international politics, law, foreign studies, public policy and sociology. Many of them have work experience at international organizations. OSIPP not only works closely with the Graduate School of Law and Politics, the Law School, the Graduate School of Economics and the Institute of Social and Economic Research of Osaka University, but also actively invites professional staff from institutions outside the University, such as international agencies and academic institutions overseas. Most faculty members are able to give lectures in English.

Diverse Students and Their Career Options

OSIPP takes on students from a variety of fields, backgrounds, ages and research interests. In addition to students who are fresh from Osaka University’s undergraduate programs, there are those with vocational experience who seek to obtain a higher level of expertise, and those from other domestic and overseas universities. About one-third of OSIPP students are from overseas. Students are highly motivated, possessing an acute sense of awareness of the issues that they confront, and have a clear sense of purpose. They take an active interest in fieldwork, internship programs, NGO/NPO activities, and opportunities to study abroad. OSIPP graduates pursue their careers in a variety of areas: academic institutions, international organizations (United Nations agencies and the World Bank, for example), central government ministries and government-related agencies, think-tanks, mass media, foreign-affiliated companies and private corporations. There are also many graduates who study abroad, or work for non-governmental and non-profit organizations.
Advanced information society rapidly taking shape in 21st century

As the advanced information society rapidly takes shape in the 21st century, this opens the way for people to engage in a much wider range of social activities. To support these developments, the Information Technology (IT) field must break out of its old academic constraints and create new technologies and systems that support the transformation to a new society. More specifically, a strong demand has emerged for a fundamental updating and reform of the curricula and coursework in these areas.
Fusion of Diverse Disciplines from Nanobiology to Brain Science

Graduate School of Frontier Biosciences – Nanobiology

Graduate School of Frontier Biosciences is a new graduate school dedicated to advancing forefront of life sciences. Established in April 2002, the school has assembled, from within and outside Osaka University, top-level researchers and educators who are experts in a wide variety of disciplines, including medicine, biology, physics, and engineering. The creation of the new department is based on our strong belief that humans and animals are not merely a simple aggregate of genetic materials, molecules, and biological structures. It is rather an ever-changing complex dynamical system, whose understanding necessitates a true interdisciplinary systems approach. Graduate School (and Department) of Frontier Biosciences consists of 6 main groups of laboratories, and affiliated laboratories. The graduate program in Frontier Biosciences offers a unique 5-year intensive training culminating in a doctoral degree upon successful completion of the program. Our goal is to nurture students and scientists in our active research environment so that they become fully equipped for taking biosciences to the next height.

The school approaches its research by seeing life as an ever-changing complex dynamical system whose understanding necessitates a true interdisciplinary systems approach. From an education perspective, the FBS offers its students and scientists in an active and fully resourced research environment so that they are prepared to take the life sciences to its next height.

All life is composed of basic biological elements like nucleic acids, genes, proteins, and membranes. Over several decades, our understanding of the life sciences has greatly advanced by bringing together an assortment of different fields including genetic engineering, molecular biology, physiology, and medicine. The next stage is to clarify how these different elements dynamically interact and change to establish the diverse and complex function seen within all biological systems.

For this, a new framework for life sciences research is needed. The FBS has broken this task into three: understanding the function of individual biological systems; understanding the basic properties of the elements involved in these systems; and clarifying how the environment helps determine function. To achieve this, the FBS puts an emphasis on quantitative fields like physics and engineering, along with traditional biological fields. The school, therefore, has brought in the best minds from the life and physical sciences to create a new standard for research and education.

In this regard, the school is composed of seven core research themes, with several other complementary ones. The Ph.D. program, which normally takes five years, is designed so that a student becomes proficient in different fields ranging from medicine to engineering in order to become a leader for the next generation of researchers. Like our teaching staff, we recruit students with undergraduate (and sometimes graduate) backgrounds of many different fields. To ensure multidisciplinary training and research, each student chooses multiple advisors from different disciplines to provide a broad training in diverse research areas, although their research is concentrated in one laboratory. We are also emphasizing collaboration with industry to help prepare our students for careers outside the university by interacting with industrial researchers, developing various industrial liaison programs, and soliciting endowed chairs.

The FBS aims to an international leader in the life sciences in two ways. First and foremost, it seeks to understand how dynamic interactions between different elements and environments lead to life. This shall be achieved by our second goal, which is to develop new techniques and technologies to accomplish this first goal. To do this, we need a mix of different people, both in terms of education and cultural backgrounds, to foster an ambitious and collaborative scientific environment.
Osaka University Law School (OULS) is designed to educate professional lawyers. The school not only provides profound legal instruction to its students, but also educates them for broader attainments in society and culture, for working ethically and enriching humanity. Furthermore, OULS emphasizes the training of business lawyers with profound knowledge of culture, society, ethics, and humanity.

One of the Nucleus Educational Institutions for Japan’s Judicial Reform

The increasing number of lawsuits in Japan shows that the Japanese have come to rely on legal procedure to settle their disputes as much as the Americans. In addition, the complexity and diversity of these actions necessitate legal professionals playing an important role. Despite the increasing demand, lawyers who have enough ability and expert knowledge are in short supply, and such shortage has caused delays in many suits. To supply sufficient quantity and quality of legal specialists to meet the diversifying demands of the society, Osaka University Law School (OULS) is designed to educate professional lawyers.

Fairness and Diversity

Since its establishment in 2004, OULS has not only provided profound legal instruction to its students, but also educated them for broader attainments in society and culture, strict ethics and rich humanity. The number accepted each year is 80. A part of them belong to a 3-year study course while those who have already earned the law degree belong to a 2-year course. For admission, there is no restriction on age, profession, and knowledge of law. Whether an applicant has graduated from the Law Faculty or not, any university graduate can apply for admission.

Curriculum Designed for Systematic Learning

The curriculum is composed of four courses: “Basic Law Courses”, “Basic Courses in Legal Practice”, “Fundamental Legal Study and Adjacent Courses”, “Advanced Courses”. The “Basic Law Courses” provide students with the fundamentals of law, such as constitutional law, administrative law, civil law, criminal law, commercial law, civil procedure law, and criminal procedure law. The “Advanced Courses” and the “Fundamental Legal Study and Adjacent Courses” give students diverse knowledge, which has not been covered by the “Basic Law Courses”. The “Basic Courses in Legal Practice” are designed to put the theory into practical use. Students can study each category systematically. Moreover, the curriculum, throughout the study of the basic subjects, is well designed to provide enough legal knowledge to those who study law for the first time. Subsequently, abundant practical education will improve the student’s legal skills.

Evaluating Business Lawyers

The most noteworthy characteristics of the curriculum of OULS are the following: All lessons are conducted by the Socratic Method in small classes. Basically, all classes are limited to less than 50 students. These classes are not simply one-way lectures, but interactive discussions between professors and students (Socratic Method). Therefore, our lessons have high efficacy in legal training. Besides, in order to introduce the latest outcomes of study into the education, OULS cooperates with the Graduate School of Law and Politics of Osaka University and Osaka School of International Public Policy. OULS emphasizes the training of business lawyers. Taking advantage of the geographic feature of being located in one of the most prosperous commercial areas in Japan, the School arranges various subjects requiring solution of legal matters, which occur during the foundation, operation, and dissolution of a corporation; for example, corporate law, tax law, law on corporate reorganization, intellectual property law, and international transaction law.

In addition, to satisfy the demands of a “legal-oriented” society, OULS encourages students to acquire professional knowledge. In order to provide practical training, the School has internship programs in law firms or in legal departments of corporations.

Being the Spearhead of the New Era

Outside the classroom, ALEC—Center of OULS (Advanced Legal Education and Career Center) has some projects for grappling with up-to-date matters. Every year, we hold symposiums and guidance on forefront issues of lawsuits or disputes. These projects can help students to decide on their own direction as a legal expert.

Success in Bar Exam and in Business

The new bar exam for law school graduate students has been planned to be less competitive than the long-established exam. It is assumed nevertheless to be highly competitive. Succeeding in the new bar exam is, of course, our primary goal. However, OULS aims to provide students with sufficient legal knowledge and skills whatever legal profession they might choose. Therefore, the students’ successful future is the School’s final goal.
Mental Health of Children is at a Crisis Point

The biggest challenge of present-day Japan is a time of low birthrates is how to raise children with sound minds. The reality is, however, that children’s mental health is at serious risk of being damaged. Juvenile crimes caused by children with mental damage, suicidal cases from being bullied, and the number of children with developmental disorders such as pervasive developmental disorders (PDD) or attention-deficit hyperactivity disorder (ADHD) are increasing. Psychiatric disorders like major depression and eating disorders are increasingly common among younger people, and elementary school cases with schizophrenia are reported at a high level.

Development of Human Resources in a Matched Manner to Social Requirement

In addition to the absolute shortage of the number of specialists in child mental health, these specialists, either psychologists, nurses/health nurses or teachers, deal with problems utilizing their own training and educational backgrounds. There is no formulated way for treating problems of children’s minds; these specialists often lack enough medical knowledge.
Student Voices

Chiara Comastri
Graduate School of Letters (Master’s year 1)
Ca’ Foscari University of Venice, Italy

I am interested in Japanese culture and language since I was in high school. One day, I just happened to hear a Japanese song on the Italian TV and I was totally fascinated by this language. At first, I started collecting information about Japanese Language on the Internet and I taught myself Hiragana and Katakana. Then, after High School I entered the East Asian Department of Venice University. In the September of 2011 I landed the Japanese Language and Culture Study Program (MONBUSHO) at Kōshigaya University and I decided to stay in Japan and take the entrance examination for graduate school. I choose Osaka University mainly for two reasons. Firstly, because of the variety of courses, activities, and the good facilities that this university offers. Secondly, because I have always had a strong curiosity about living in the Kansai region. Now one semester has passed, and I can say I made the right choice by choosing Osaka University. In Osaka I met also a lot of people from all over the world and thanks to them I learned that there are a lot of point of view and different way of thinking. I think that the most important thing in the world today is to understand each other's culture. I believe that when you live in harmony with other people of the world, it’s definitely possible to have peace on earth.

Until the graduation there is still one year and half to go and I intend to work hard on my graduation thesis. Talking about the future, I have not really decided yet, but it would be great to become a scholar. If possible, I would like to translate Japanese authors and introduce them to the Italian people.

Lin Weijung
Graduate School of Language and Culture (Doctor’s year 2)
Soochow University, Taiwan

In 2009, I entered the Graduate School of Language and Culture at Osaka University as a non-degree research student. It was difficult for me at that time to express my thoughts fluently in Japanese. However, with the kind help and valuable advice from both my professors and other students, I overcame various obstacles to become a regularly matriculated graduate student. In addition to the courses offered by my department, Osaka University provides both a wide variety of courses which enable students to further deepen our special knowledge and a well-equipped research environment.

In the Graduate School of Language and Culture, the student body is highly international. Besides Japanese students, there are also students from all over the world, including Chinese, Korean, American and Russian students. Interacting with peers from different cultural background has broadened my horizon. Enrolling in various graduate courses, I have been able not only to acquire expert knowledge in my field but also to find new interests, which has greatly enriched my life studying abroad. Over the past five years, with the support of many people, I have experienced and challenged myself a lot in both my intellectual and daily life. Admittedly, I also encountered some failure and frustration during the learning process, but I feel I have truly grown after all the trial and error.

When the opportunity arises, I would also like to join the comfort zone and experience a whole new culture through studying abroad? Studying at Osaka University will definitely be a precious opportunity for you to expand your perspective, experience new things, and explore a new self hidden inside you.

Liu Benson Bai-Hsiang
School of Economics (Bachelor’s year 3)
Cherrybrook Technology High School, Sydney, Australia

My friends would often ask me, “Why in Japan?” and I would always reply to them “I wanted to challenge myself and have a new start”. Have I achieved my goal? “Yes, I have”. However, that joy of achieving the goal has long abandoned me. The thrill of the chase was gone, and I realized that my original goal of coming to Japan was no longer important since it was something that I have already acquired and stopped thinking about. I had always imagined myself living an exciting life in Japan, enriched with challenges. However, one by one, in a bipartisan way, my desires were fulfilled; and I became inclined to search for a new goal in Japan. Now if I were to answer the question of again, I would probably say “I am here to search for a new goal, the one that will be replaced by another and another in a landscape filled with opportunities”.

In search for a new place to call home whilst I pursued my new goals, I attended a meeting in which university professors from different parts of Japan gathered to introduce their respective universities to international students. It was then that I stumbled across a rather interesting professor from the Osaka University. When my friends and I first entered the room, he immediately greeted us with what I considered to be the friendliest smile I have ever seen. He gave us a brief introduction about our major, economics, and honest opinions of any questions we asked. Since I wanted to join a university that had a strong presence in the study of mathematics, I thought to myself afterwards that I have probably had found the next place to begin my new adventure. Despite having the privilege to study in one of the most prestigious universities in Japan, I realized my studies still solely relies on the ability we have to push ourselves. During my first year in the university, I was still lost in the ocean of possibility, searching for a goal to call my own, I began thinking of the field I left behind in Australia. As I dig deeper, I found myself more and more interested about the concept of risk management. Osaka University does provide a vast amount of mathematical economics subjects and this would be a wonderful opportunity for me to continue what I have left off.
Ma Yuran
Graduate School of Pharmaceutical Sciences, (Master's year 1)
Shenyang Pharmaceutical University, China

I applied for the Japanese Government Scholarship in 2006, passed the selection, and came to Osaka in 2007. Osaka University is foreign-friendly. You can complete administrative matters without any Japanese language knowledge. Classes are, on the other hand, conducted in Japanese, but more international programs are being launched every year. Research study and communication with professors can be done in English, while usage of Japanese is encouraged. With that said, life in Japan with zero Japanese proficiency will not be enjoyable.

My study is an interdisciplinary research, combining computer networking concepts and molecular biology models. It was difficult due to my weak background in biology. However, looking from a different aspect, it is a good challenge, a disruptive force that pushed me out of my own comfort zone, an inspiration, and also an opportunity to broaden my perspective, but at the same time, focus deep down into my main field of study. Besides study, Osaka University also provided me an opportunity to expand my network not only to Japanese, not limited to students, but all kind of people from around the globe.

Today, I can truly say that I made the right decision choosing Osaka, and in particular Osaka University over other places in Japan. Even though the city of Osaka is not as foreign-friendly as Tokyo, in my opinion, it is much less stressful—no terribly crowded trains, while there are enough places to enjoy days and nights. It is a good mix for both studying and living.

Narun Asvarujanon
Graduate School of Information Science and Technology (Doctor's year 3)
Kurashiki University, Bangkok, Thailand

In search for purpose in life, we need to go out of our comfort zone and chase our dreams. Inevitably, we leave our family and friends and embark on an exciting self-journey abroad. As a young researcher, I knew that I need to study in one of the best universities in the world to hone my potentials and widen my scientific experience. My brilliant Filipino professors who graduated from Japanese universities through the Monbukagakusho (MEXT) scholarship have motivated me to go through the rigorous steps of scholarship application. In the end, all of my hard work and perseverance helped me win the award.

I am studying at Osaka University under the Graduate School of Frontier Bioscience, which aims to foster “omoroi” (interesting) science through the effective collaboration and integration of various fields. It is an honor and privilege indeed to be a part of this dynamic and prolific scientific community which continuously contributes high-impact research outputs. No wonder, Osaka University is one of the world’s leading universities in the field of bioscience. My work is on Karyopherin-β proteins and their roles in various cellular events like pluripotency and lineage selection. Hopefully, my results can contribute to foreign language education and bilingual studies. In Osaka University, there is an excellent research base on the topic, most of the conferences in the field are also held here. Second, Osaka University is one of the largest and most famous universities in Japan. Third, it is a very international place. It had to describe all the excitement at the new and amazing experience you get when you meet students from so many other countries.

My poor words couldn’t express all my appreciation of this university, this city, this country. The scenery I see, the kind people I meet, the service and right I have, the various I get, all of these make my life in Osaka comfortable and joyful. It’s the best choice I have ever made, and also believe that you deserve.

Percival Peralta Sangel
Graduate School of Frontier Bioscience (FBio), (Doctor's year 5)
University of the Philippines, Philippines

In search for purpose in life, we need to go out of our comfort zone and chase our dreams. Inevitably, we leave our family and friends and embark on an exciting self-journey abroad. As a young researcher, I knew that I need to study in one of the best universities in the world to hone my potentials and widen my scientific experience. My brilliant Filipino professors who graduated from Japanese universities through the Monbukagakusho (MEXT) scholarship have motivated me to go through the rigorous steps of scholarship application. In the end, all of my hard work and perseverance helped me win the award.

I am studying at Osaka University under the Graduate School of Frontier Bioscience, which aims to foster “omoroi” (interesting) science through the effective collaboration and integration of various fields. It is an honor and privilege indeed to be a part of this dynamic and prolific scientific community which continuously contributes high-impact research outputs. No wonder, Osaka University is one of the world’s leading universities in the field of bioscience. My work is on Karyopherin-β proteins and their roles in various cellular events like pluripotency and lineage selection. Hopefully, my results can contribute to foreign language education and bilingual studies. In Osaka University, there is an excellent research base on the topic, most of the conferences in the field are also held here. Second, Osaka University is one of the largest and most famous universities in Japan. Third, it is a very international place. It had to describe all the excitement at the new and amazing experience you get when you meet students from so many other countries.

My poor words couldn’t express all my appreciation of this university, this city, this country. The scenery I see, the kind people I meet, the service and right I have, the various I get, all of these make my life in Osaka comfortable and joyful. It’s the best choice I have ever made, and also believe that you deserve.

Pankratova Snezhanna
School of Foreign Studies (Bachelor's year 1)
Ryazan State University, Russia

I have a passion for languages, so my decision to study abroad came from the will to be fluent in the languages I learn. When I was in my third year studying Japanese at the university I felt my language ability was enough to get the most of my study abroad. So I applied for MEXT scholarship and arrived in Japan the following year. There are several reasons why I chose Osaka University. First, it is a good place to complete my major. My interests lie in foreign language education and bilingual studies. In Osaka University, there is an excellent research base on the topic, most of the conferences in the field are also held here. Second, Osaka University is one of the largest and most famous universities in Japan. Third, it is a very international place. It had to describe all the excitement at the new and amazing experience you get when you meet students from so many other countries.

In Japan you can find very welcoming learning atmosphere. I wish you to get the most of your studying here. The country boasts many excellent universities and I wish you to find the university that best suits your needs. I have found mine.
Rebecca Nicole Kronick
Graduate School of Human Science (Doctor’s year 2)
University of Kent, UK, Antigua, Guatemala

Ever since my senior year at university I have been in love with the Japanese language and culture. I have always been attracted to Asia, and after graduating in 2006 I moved to Tokyo. I left in 2008 to pursue my studies in Europe. After completing my Masters, I returned to Guatemala. I always knew that I wouldn’t settle at home, and I had an urge to go back to Asia. Traveling itself is like a disease and the more you do it the more addicted you become. I have been traveling my whole life! And so, when I wanted to return to Asia, a colleague recommended I apply for a scholarship to an Asian country. He specifically recommended the Japanese government scholarship since I was an ideal candidate. Personally, I wasn’t sure if I wanted a PhD, but I always knew that I would once again return to Japan. As I fate dealt its card, I was first on the list from the 2011 Guatemalan candidates. I researched universities extensively and chose Osaka University. Why Osaka? I wanted a program for International Development, and in English. Very few universities offered this. I also didn’t want to live in Tokyo, as I had lived there before. I then began to research professors with whom I wanted to work. It was at this time that I found Professor Nobuhide Sawamura, in the department of International Collaboration. We had a Skype interview and something clicked. I knew that I wanted him to be my advisor. As for living in Japan…? Living abroad always presents itself as a challenge. However, it is up to us to determine how we will face that challenge. Will we embrace it?

Samantha Connop
Graduate School of Science (Master’s year 1)
University of Manchester, United Kingdom

I have always wanted to travel and live abroad. An interest in Japanese language and culture as an undergraduate student in the UK led me to pursue graduate study in Japan. Osaka University is one of the most highly regarded educational institutes in Japan. In addition to its prestigious reputation, Osaka University is situated in Japan’s vibrant cultural centre. Before deciding to study abroad in Japan, I was faced with the financial difficulty of how to fund my Masters. However, I was able to receive financial support from the Japanese government and from Osaka University during my stay here. Without this help, I would have been unable to follow my dream.

Ruixiao Song
Graduate School of Medicine (Master’s year 2)
Northeastern University, China

It has been three years since I landed on the earth of Japan with the feeling of not only exciting, but also fear to the uncertain future. Time flies, however, I can still remember the first small of fresh air, the first sight of the blue sky, and the first hearing of unfamiliar Japanese. Coming to Japan had always been my dream. It was Osaka University that gave me the chance to realize it. I major in Medical Physics and Engineering which in China is just a new and developing field of science left behind by the developed countries, for instance, Japan. I am hoping that I can bring the knowledge and technology that I learned in Japan back to China in order to improve the medical standard of China. I am hoping that even with my tiny power I can help more people to get better diagnoses, better treatment. Now my dream of studying abroad had came true, but I cannot stop here. I will go on and work hard to make sure this dream come true.

Finally, to the friends who are considering about coming to Japan, to Osaka University. It’s the time to make your determination. Osaka University is definitely a good choice. We have sophisticated faculty here who can help you in academic, gentle staff who can help you in daily life, and there is something that you will never learn unless you come here by yourself, see with your eye, listen with your ear, taste with your own heart. If I can get a second chance I will still choose Osaka University without any hesitation.
Sunghyon Jang
Graduate School of Engineering (Doctor’s year 2)
Seoul National University, Seoul, Korea

I spent a year at Osaka University as an exchange student in 2008. The reason I chose to go abroad was because I wanted to experience foreign culture and learn a new language. I think that my decision of coming to Osaka University was the right choice, because my one-year experience in Osaka led me to a new life that I had never expected before. When I was in Korea, I was not interested in going to graduate school. However, while I was in Osaka, I came across a very interesting research topic in a class about the Sodium Fast Breeder Reactor: The Sodium Fast Breeder Reactor is a prospective technology which has the possibility of reducing the amount of high level radioactive spent fuel coming from the Light Water Reactor. However, much research is still necessary in order to improve the system in terms of safety. I was very surprised at this high technology, as well as at Japan’s well-trained human resources and long history in researching this technology. This was when I thought about going to graduate school in Japan. Making the decision to go to Japan, however, was not easy, because my former university, Seoul University, is the most prominent university in Korea, and provides a high quality education. What made me come to Osaka University were the well-equipped research environment and the trusting relationship between students and professors. At Osaka University, everything is well organized to provide a good environment for students. Professors treat their students as partners and coworkers, so they respect their students’ own ideas in their research. I am really satisfied with my life in Osaka, and I really appreciate the guidance I received from Prof. Akira Yamaguchi and Associate Prof. Takashi Takata.

If you are looking for a place to develop your career as a researcher, I definitely ensure you that Osaka University is the place where you can make your dream come true.

Yuzhao Song
School of Law (Bachelor’s year 2)
Chengdu Experimental Foreign Languages School, China

From high school, I was extremely keen on history and politics. That, to a large extent, affected on me choosing law as my major. After high school, with one-year hardworking of learning Japanese from zero, I finally got a box of files for freshman from Osaka University. On it there’s one sentence: “What makes the mountain great is not its height, but every single tree on it.” At that point, I had a feeling this is the right place for me, which would offer me the biggest development room, and I would grow with her to achieve higher place.

As it proved out, OU did indeed, open a new world for me. Summer seminar to exchange to Australia gave me a basic knowledge of western law and a very fruitful fun holiday; G90 program classes conducting in English, providing me a chance to participate in international studying; In International Student Union, I met tons of friends from all over the world; As a member of English Speaking Society, my team and I got our best scores in national competitions in OU history; Days and nights in the library, my friends and I prepared for International law moot court Jessup Cup…etc.

Finally, I recommend prospective Osaka University international students to utilize IC hall facility to improve their Japanese language skills and built relationship with other students. The country of Japan is very secure and people in Osaka are friendly and warm-hearted. Food you can find in Osaka is always reasonable and delicious. Above all, Osaka University is an excellent choice for you and we are waiting for you to join us.

Ziwei Ying
Graduate School of Dentistry (Doctor’s year 3)
Nanchang University, China

As we all know, although the dental clinic level is developing rapidly in China these years, there’s a distance between China and Japan in the field of dental skills and materials. The reason for selecting Japan is that dentists in Japan are very professional and treat patients carefully and patiently. Furthermore, those dental materials are widely used and appraised very well in the world. Graduate School of Dentistry Osaka University, gathering many outstanding dentists, is one of the most prestigious institutes all over the world. Although 4-years PhD course is a hard decision for career as a dentist, I still decided to enroll in Osaka University.

Now I’m a year 3 PhD student in the Department of Prosthodontics, Gerodontology and Oral Rehabilitation. My research program is about effect of stud attachment on implant and implant-retained overdenture. I performed it in model and CAD/CAM system. I think it is useful for these edentulous patients around the world.

After I go back to China, I am planning to engage in university hospital and share my experiences and skills mastered in Japan. To fulfill of my dream, I have to continue hard work and conduct updating scientific research in my career. Moreover, it’s critical for me to maintain my close relationships with my professor and colleagues.

Finally, I recommend prospective Osaka University international students to utilize IC hall facility to improve their Japanese language skills and built relationship with other students. The country of Japan is very secure and people in Osaka are friendly and warm-hearted. Food you can find in Osaka is always reasonable and delicious. Above all, Osaka University is an excellent choice for you and we are waiting for you to join us.

My story continues with OU, and I am here waiting to hear yours.
Osaka University Library has one of the largest university library collections in Japan. The library holds more than 3.9 million volumes and 72,000 periodical titles. We also provide electronic materials for research and education such as e-journals (15,549 titles), e-books (15,710 titles) and databases (more than 40 types). Students and faculties can access these e-resources in campus and off campus.

The Library works on digitalization of the rare and valuable materials collection. For example, we have Kaitokudo Collection, the Akagi Collection, and so on. Kaitokudo is one of the two old schools that the spirit and roots of Osaka University reach back to. Some of the collections are available online.

The Library offers the digital archive of research results of Osaka University, that is OUKA, the Osaka University Knowledge Archive. We provide over 23,000 items, including degree theses and University journals in OUKA.

We have “Learning Commons” in Main Library, Science and Engineering Library, and International Studies Library. Learning Commons is an area where brings together library services, IT services and group learning. Students and faculties can discuss and collaborate there, not only just reading. We also provide staff and Teaching Assistants so that students can find their way on their academic projects.

Main Library
The Library in Toyonaka Campus is one of the largest national university libraries in Japan. It has a total area of 18,930 square meters, over 1,600 seats, and over one million volumes of printed materials.

The Library plays a central role in providing research information. It serves the educational needs of all fields and the research needs of schools in Toyonaka Campus such as letters, law, economics, science, engineering science, etc.

The library has various spaces to support university member’s study and research: group study rooms, private study rooms, computer area, silent area, Learning Commons, and Global Commons. The Global Commons, which opened in November 2012, is collaborative learning space for comprehension of multiple languages and multiple cultures. It is equipped with the world news browsing system and electronic blackboards, etc.

Life Sciences Library
The Life Sciences Library on the Suita Campus was established in 1992 as a general library for biosciences such as medicine and biology. It plays a central role in the provision of academic information in biosciences, and is attracting nationwide attention with its unique services using new media and networks. Since 1977, it has been serving as a designated library for the National Center for Overseas Periodicals (NCOP). Currently, it has about 18,800 journals, including about 1,027 current titles of foreign journals.

Science and Engineering Library
The Science and Engineering Library on the Suita Campus, was established in 1970, the East Building was annexed in 1986. It contributes to the education and research activities of the Graduate School / School of Engineering, the Graduate School of Information Science and Technology, and other related research institutes.

The Learning Commons opened in 2009. It provides seamless access to scholarly print and electronic resources and contains a meeting table and whiteboard space for group discussion. In order to support students-led activities, library staff and Teaching Assistants are available for consultation. Library also has enough space for quiet study.

Presently, the Library holds about 424,000 books and 8,700 journals on science and engineering.

International Studies Library
The International Studies Library was established in 1921 as Osaka University of Foreign Studies Library. The library was renamed and reorganized after the merger of Osaka University and Osaka University of Foreign Studies in October 2007.

Holding an abundant collection of about 608,000 volumes, it is one of the nation’s top libraries in the fields of International studies and linguistics.

“LUX” (The Learning Commons) was opened in April 2012. In the new space with meeting tables, whiteboards, and computers, students can actively discuss and learn in groups.
Research Institutes

Institute for Protein Research

Institute for Protein Research (IPR) was established in 1958 as a part of Osaka University with the aim of promoting basic science for the development of industry. Since then, IPR has conducted interdisciplinary research in the fields of materials, information, and biological sciences. We play a leading role in the nanoscience and nanotechnology research through our Nanotechnology Center, which was established in 2002 in its first such center attached to a university. As a nationwide research collaboration system, IPR established the Network Joint Research Center for Materials and Devices and works in conjunction with five university-attached research institutes. The major objective is to promote the research on the fundamental mechanisms of joining and welding processes and to develop the industrial applications of the processes. In 2013, about 270 researchers conducted the joint works in IPR. The processes are absolutely essential not only for production of large constructions but also for micro and nano-sized structures. Corresponding to the recent research trends, IPR established Smart Processing Research Center (SPRC) by reorganizing the two attached Centers. The Institute has three research divisions with ten departments and SPRC with seven departments. The research divisions are (Materials Processing System four departments), Materials Joining Mechanism (three departments) and Functional Assessment (three departments). Obviously, the welded and joined structures are required to have high performance in the field of mechanical, physical and chemical properties irrespective of the materials used. To secure the high reliability of joined structures, JWR is actively promoting the research at joining interface that offers the adequate joining conditions and microstructures. To correspond to the social needs, computer simulation, information technology, environmentally conscious processing and nano-technology are widely applied to reveal the many characteristics of joints and interface. The materials used for joining and welding are a variety of metals, ceramics, organic materials, and composites.

Research Institute for Microbial Diseases

www.biken.osaka-u.ac.jp/english/

The Research Institute for Microbial Diseases was originally established as a four-department "Research Center for Communicable Diseases" in 1934. Basic research on infectious disease, immunology, and cell biology is the Institute's principal focus. The results of research in these fields at the Institute have contributed considerably to the diagnosis, prevention, and treatment of infectious diseases, immunological diseases and cancer, as well as to progress in basic biomedical science. In 2005, the Institute was reorganized to constitute three research divisions that represent 10 departments together with three attached centers for specialized research on infectious disease and genome information. Moreover, the Research Collaboration Center on Emerging and Re-emerging Infectious Diseases was founded in Bangkok in collaboration with the National Institute of Health, Thailand, to defend people against possible emerging and re-emerging infections. The Institute was selected as "the 21st Century COE programs" on the theme of "Combined program on microbiology and immunology" (2003-2007). In 2008, the Institute was also selected as "Global COE programs" on the theme of "Frontier Biomedical Science Underlying Organelle Network Biology." The Institute accepts and trains Master and Ph.D. candidates in the medical and biological sciences. At present, more than 300, associate, and assistant professors, research associates, graduate students, and research fellows pursue studies in microbiology, oncology, and molecular biology at the Institute.

Institute for Protein Research

Institute for Protein Research (IPR) was established in 1958 as an inter-university joint-use facility attached to Osaka University. Protein research has made a remarkable progress for the past 50 years to lead a deep understanding of structures and biological functions of proteins and their complexes. IPR has made a significant contribution to the progress and its organization has been expanding through strong supports from the science community. Now IPR consists of four divisions of Protein Chemistry, Protein Structural Biology, Integrated Protein Functions and International Collaboration Research, and Research Center for State-of-the-art Functional Protein Analysis in affiliation with IPR. About 55 faculty members, 70 postdocs and 60 supporting staffs are working in a total of 17 laboratories. We are heavily involved in the education of Graduate School of Science, Graduate School of Medicine and Graduate School of Frontier Biosciences to supervise about 110 graduate students. IPR has been operating Worldwide Protein Data Bank (wwPDB) and BioMagnetic Resonance Data Bank (KMRDB) as one of three worldwide centers. Several large and unique facilities of IPR, such as synchrotron beam lines (SPring-8) and the superconducting NMR (800 and 950 MHz) are opened for joint usage research. Every year, IPR conducts collaborative works with a total of nearly 100 researchers and graduate students from outside institutions including overseas and holds 12 seminars for over 1,500 participants.

Institute of Social and Economic Research

www.iser.osaka-u.ac.jp/index-e.html

IER was founded in 1904 as a research institute attached to the Faculty of Economics, and in 1966 became independent of the faculty. Since its inception, IER has employed first-rate researchers and has conducted internationally recognized research in modern economics. In 2010, IER was designated as Joint Usage Research Center for behavioral economics by the Ministry of Education, Culture, Sports, Science and Technology. IER faculty members engage in both theoretical and empirical research on a wide variety of topics ranging from microeconomics, macroeconomics, game theory, and experimental economics to problems facing Japan such as the recession, the financial crisis, industrial policy, and business strategy. A newly created the Research Center for Behavioral Economics affiliated with IER aims to establish the first hub of research in behavioral economics in Japan. IER edits and publishes the International Economic Review, one of the most highly ranked scholarly journals of economics in the world, in conjunction with the Department of Economics at the University of Pennsylvania. IER has two visiting research scholar positions, and roughly five foreign researchers are invited every year to Osaka to engage in joint research with IER faculty members.

Joining and Welding Research Institute

www.jwri.osaka-u.ac.jp/en/index_e.jps

The Joining and Welding Research Institute (JWRI) is to promote the research on the fundamental mechanisms of welding and joining processes and to develop the industrial applications of the processes. In 2013, about 270 researchers conducted the joint works in JWRI. The processes are absolutely essential not only for production of large constructions but also for micro and nano-sized structures. Corresponding to the recent research trends, JWRI established Smart Processing Research Center (SPRC) by reorganizing the two attached Centers. The Institute has three research divisions with ten departments and SPRC with seven departments. The research divisions are (Materials Processing System four departments), Materials Joining Mechanism (three departments) and Functional Assessment (three departments). Obviously, the welded and joined structures are required to have high performance in the field of mechanical, physical and chemical properties irrespective of the materials used. To secure the high reliability of joined structures, JWRI is actively promoting the research at joining interface that offers the adequate joining conditions and microstructures. To correspond to the social needs, computer simulation, information technology, environmentally conscious processing and nano-technology are widely applied to reveal the many characteristics of joints and interface. The materials used for joining and welding are a variety of metals, ceramics, organic materials, and composites.
Joint-Use Facilities
Low Temperature Center

www.ftt.osaka-u.ac.jp

The low temperature center was established in 1971 as the joint-university facility and has been one of the research bases for the Universities of Toyonaka and Suita campuses. The main purpose of the center is to be a stable supply of very cold refrigerants, liquid nitrogen, and liquid helium, at a low price in order to support the researches at low temperatures. Liquid nitrogen and liquid helium are necessary for the experiments at low temperatures and structural researches on solid and liquid substances. In the low temperature center, liquid helium is produced by using the helium liquefier equipped in the Center of Very High Pressure Gas Safety Law. Since helium is extracted from the natural gas, and Japan imports 100% of its use, the market price of liquid helium is very high. In order to reduce its price, the Center of Very High Pressure Gas Safety Law invested in the helium liquefier. This liquefier is able to continuously produce 3000 liters of liquid helium every day, which is about 20% of the market price of a similar liquefier.

In order to support the researches at low temperatures, the low temperature center not only supplies the liquid refrigerants but also lends various low temperature measurement equipment and test equipments to the researchers. The low temperature center also provides experimental spaces for co-researchers. In addition, the low temperature center performs its own research at low temperatures and also gives training programs for safety-use of liquid refrigerants as well as high pressure gasses.

Research Center for Ultra-High Voltage Electron Microscopy

www.uvem.osaka-u.ac.jp

The Research Center for Ultra-High Voltage Electron Microscopy (UHVEM), Osaka University, has been playing an important role in the progress of instrumentation and application of UHVEM. A 3MV UHV electron microscope (UHR-3300) to the center in collaboration with Hitachi Co., Ltd., is installed in the center and is used quite effectively in research in the fields of material science, medicine, and biology.

The maximum accelerating voltage of the UHVEM is 3.5 MV; the maximum observable thickness of specimens is 5μm, and the maximum observable thickness of the maximum observable thickness of specimens that can be observed is 10μm. In the case of biological samples, it is possible to use 1μm-thick specimens, depending upon materials and objects of study. This advantage of UHVEM is not only observed in research on single cells and live cells, but also as coordination of short-term exchange programs and their facilities. The Research Center for Ultra-High Voltage Electron Microscopy is planning to develop a new observation technology for observing the interaction of materials and objects of medical, biological, and environmental researches. At the heart of Suita Campus, the Intercollegiate Collaboration Hall (IC Hall) opened in April 2002. The International Student Center was reorganized as Center for International Education and Exchange (CIEE).

This center was established in 1994 as International Student Center, renders useful services to international students, including various activities. The seminar on understanding cultural differences, like the culture of Japan and cultures, is recommended by CIEE. Various cultural and international activities, such as the celebration of the opening of the academic year, are organized by CIEE in order to provide a chance for doing in-depth research at Osaka University.

Radiosotope Research Center

www.rsc.osaka-u.ac.jp

Radiosotopes are used not only for basic science but also widely in medicine and industry. At Osaka University, many sorts of devices for in-situ specimen treatment, such as heating, cooling, stressing and current feeding, have been developed in the Radiosotope Research Center. The center is open not only to researchers at Osaka University, but also to those from other institutions. Several projects in which scientists remotely control and operate the UHVEM and study the microstructure, are in progress and successful results have been accumulated.

Research Center for Environmental Preservation

www.divo.eng.hoosier.org/home.htm

Today’s dizzying pace of scientific and technological development, we have come to enjoy a rich and abundant culture. While on the one hand, we have come to enjoy the field of call engineering with the objective of analyzing the cellular functions of bacteria, fungi, and plants, and developing and using functions of these cells for the purpose of developing and using biological resources that exist on the plan.

In the field of international exchange, the center is cooperating with researchers in the field of Japan. In 2012, the University of Osaka and Tokyo, has conducted for the past years the UNESCO Postgraduate Training Course in the fields of Microbiology and Biotechnology to offer specialized training for young scientists and professors from UNESCO member countries in the Asian region. New UNESCO training course termed “UNESCO Biotechnology School in Asia” has been launched in 2012.

International Center for Biotechnology

www.icb.osaka-u.ac.jp/index_e.html

While offering education and conducting research in the field of biotechnology, the Center is cooperating with researchers in the field of Biotechnology, together with an established Cooperative Research Station. Biotechnology is the science of life, developing and implementing countries in an attempt to become a leading biotech center in Asia.

The main area of research is industrial biotechnology rooted in microbial biotechnology. The Center has been involved in biotechnology, agricultural and forest resources in resource-rich countries such as the following research projects related to biotechnology and producing results of research.

Field of Nanochemistry: Development of new materials and catalytic materials

Field of Nanophotocatalysis: Development of chemical sensors and photofunctional materials based on nanoscience and nanotechnology.

The Museum of Osaka University

www.museum.osaka-u.ac.jp

The museum can be found in the “Takujaku” (founded in 1838) and “Kakutokuzan” (founded in 1724). Over this long period a large archive of precious materials. In excess of 2 million artifacts has been given at the center. The museum contains various art objects and artifacts in various environmental issues, which are continuing to grow in problems. While on the other hand, humankind and social lifestyle. As a result, we have come to use not only the development of environmental benign methodology in organic synthesis, and highly selective and sensitive methods for the analysis of hazardous chemicals. Furthermore, this center organizes classes, seminars and public lectures which aim at providing a scientific education about radiation safety to the general public.

Radioisotope Research Center

www.rsc.osaka-u.ac.jp

The Radioisotope Research Center is currently involved in the development of environmental benign methodology in organic synthesis, and highly selective and sensitive methods for the analysis of hazardous chemicals. Furthermore, this center organizes classes, seminars and public lectures which aim at providing a scientific education about radiation safety to the general public.

Joint-Use Facilities

Joint-Use Facilities

Field of Nanophotocatalysis: Development of chemical sensors and photofunctional materials based on nanoscience and nanotechnology.

The Center for Advanced Medical Engineering and Informatics (MIEI center)

www.miei-osaka-u.ac.jp

The Center for Advanced Medical Engineering and Informatics (MIEI) Center has been established since 2004 as the first university center after the beginning of a system of independent administrative corporations. The MIEI Center aims at enhancing cooperation between researchers in the fields of medicine, engineering, and information science, leading to center of core advanced medical engineering and informatics and interdisciplinary research. Integrated research projects of the center will exploit the new era of biological, medical, and clinical sciences, and contribute to improving people’s health and welfare and developing new industries. By maintaining interdisciplinary and international activities, the center will play a leading role as a center of advanced medical engineering and informatics in order to develop high-level human resources who will be leading a new consortium for advanced wellness society. The programs include introductory and advanced
Renovation Center of Instruments for Science Education and Technology

Renaissance Center of Instruments for Science Education and Technology was founded in April 2007 based on the Osaka University master plan policy, as a Global Collaboration Center for the university through making instruments for research and education. The Renovation Center is a project base group, which is based on a concept of active utilization of used equipments among the whole university.

Each division has subdivided groups. Division I is composed of mechanical group, glass-blowing group, and chemical group aiming at technical assistance and apparatus-making supports for research and education. Division II is responsible for the improvement of experimental equipments by providing reuse database by running its own computer system operation. Division III provides user’s workshops for machinery works and chemical physical analysis.

Global Collaboration Center

Global Collaboration Center (GLOCOL) is an academic institution dedicated to research, teaching and social engagement in global and local agendas involving trans-cultural, transnational and transregional issues. Founded in 2007, its 15 full-time researchers currently work under the directorship of Professor OHMISHI Kazuhiro.

We at GLOCOL, Local Laboratory of Culture and Economy (LLCE) and our projects is focused on LLCE’s mission as its basic goal is to attain symbiosis co-existences among the various fields of economic, social, political, cultural relations and biophysical evolution of all the whole world. This goal cannot be achieved solely by means of purely scientific technologies, but requires the participation of everyone who wants to contribute to the promotion of the society.

In order to take into account not only the multiplicity of human values and recognition of the environment, but also the human values, geopolitical, ecological, biological phenomena on earth from GLOCOL’s research, we aim to consider interdisciplinary methods, combining inspirations from the arts and the sciences in unique ways to explore the issues at hand from multifold perspectives. Graduate student staff at GLOCOL, work in joint research projects, collaboration with researchers all over the world. Our current large scale international and international academia-society projects include one funded by SATREPS (Science and Technology Research Partnership for Sustainable Development), which aims to investigate the social, ecological and biological factors leading to the development and transmission of drug resistant bacteria in Viet Nam and to develop effective monitoring procedures for combating the problems in the long run. We are undertaking a major project on Food Security funded by Grants in Aid for Global COE Program.

GLOCOL also cooperates with the other university and research organizations, succeeded Sustainability Design Center to further improve its website as a platform for exchanging knowledge, ideas and supports and promotes research that encourages taking action on global issues such as global warming and promotes sustainability science and research and education in the field of environmental innovation. By collaborating with multiple graduate programs and institutions, the GLOCOL website provides a platform that connects all parts of Osaka University with the inter disciplinary, cross-university Sustainability Science Education Program, which aims to improve the core knowledge and practical skills of sustainability science as well as academic and education skills and needs to develop a sustainable society. Through its educational programs, the GESC functions as a platform for sharing knowledge within the university and supports and promotes research through taking action toward environmental innovation for sustainability. GESC also conducts international exhibitions and conferences to promote the research and knowledge in global society. Taking an interdisciplinary approach, the center uses domestic and international networks to conduct research and education on such topics as the model design of sustainable societies, including low carbon societies and recycling-oriented societies, management and system design for transitioning to low-carbon societies, and creating pluralistic valuation methods for sustainability and the establishment of environmentally sustainable systems. In addition to the above, the center conducts research that brings together basic technologies to build sustainable societies with expanded, global social views and to encourage technological and social innovation.

Center for the Study of Communication-Design

The Center for the Study of Communication-Design (CSCD) was established in April 2007. Communication-Design is an umbrella term for communication networks between experts and non-experts (citizens) between people with different interests and positions. The objectives of CSCD include: (1) training of graduate students in communication capability with citizens, (2) training of science and technology communicators and mediators with skills in dialogue facilitation as well as conflict management, (3) research and development of communication-design especially for consensus building in public affairs, and (4) building of communication networks in collaboration with NGO/NGOs and active citizen.

CSCD consists of the School of Science, Technology, Human Care in Practice, Community Design, Art and Communication-Design. The background of staff members is various, from philosophy, sociology, psychology and anthropology to design and art.

In nine years, our research activity became interdisciplinary by collaborating with such areas as natural sciences, engineering and social sciences.

As for education programs or updated liberal arts, CSCD offers a set of three main programs: the Undergraduate Student Program, for graduate students, which include introduction to science and technology communication and performing arts workshops, among others. Social alliance is a very important aspect of the communication-design training program for students, NGO/NGOs and active citizens, such as those for mediators in medical settings, coordinators of community developments, coordinators of various workshop and art coordinators. CSCD also offers Graduate Program for Advanced Interdisciplinary Studies in ‘Studies of Communication-Design: Media and Politics Policy in Public Spheres,” and Graduate Minor Program in “Science and Technology Communication.”

Our communication network is structured as a network of citizens, organized for interested citizens to make contact with researchers and graduate students and to have their science-related problems solved.

Center for the Study of Finance and Insurance

http://www.fieldo.osaka-u.ac.jp/en

We at GLOCOL, Local Laboratory of Culture and Economy (LLCE) and our projects is focused on LLCE’s mission as its basic goal is to attain symbiosis co-existences among the various fields of economic, social, political, cultural relations and biophysical evolution of all the whole world. This goal cannot be achieved solely by means of purely scientific technologies, but requires the participation of everyone who wants to contribute to the promotion of the society.

In order to take into account not only the multiplicity of human values and recognition of the environment, but also the human values, geopolitical, ecological, biological phenomena on earth from GLOCOL’s research, we aim to consider interdisciplinary methods, combining inspirations from the arts and the sciences in unique ways to explore the issues at hand from multifold perspectives. Graduate student staff at GLOCOL, work in joint research projects, collaboration with researchers all over the world. Our current large scale international and international academia-society projects include one funded by SATREPS (Science and Technology Research Partnership for Sustainable Development), which aims to investigate the social, ecological and biological factors leading to the development and transmission of drug resistant bacteria in Viet Nam and to develop effective monitoring procedures for combating the problems in the long run. We are undertaking a major project on Food Security funded by Grants in Aid for Global COE Program.

GLOCOL also cooperates with the other university and research organizations, succeeded Sustainability Design Center to further improve its website as a platform for exchanging knowledge, ideas and supports and promotes research that encourages taking action on global issues such as global warming and promotes sustainability science and research and education in the field of environmental innovation. By collaborating with multiple graduate programs and institutions, the GLOCOL website provides a platform that connects all parts of Osaka University with the inter disciplinary, cross-university Sustainability Science Education Program, which aims to improve the core knowledge and practical skills of sustainability science as well as academic and education skills and needs to develop a sustainable society. Through its educational programs, the GESC functions as a platform for sharing knowledge within the university and supports and promotes research through taking action toward environmental innovation for sustainability. GESC also conducts international exhibitions and conferences to promote the research and knowledge in global society. Taking an interdisciplinary approach, the center uses domestic and international networks to conduct research and education on such topics as the model design of sustainable societies, including low carbon societies and recycling-oriented societies, management and system design for transitioning to low-carbon societies, and creating pluralistic valuation methods for sustainability and the establishment of environmentally sustainable systems. In addition to the above, the center conducts research that brings together basic technologies to build sustainable societies with expanded, global social views and to encourage technological and social innovation.

Center for Sustainable Science Education

http://www.ms.ece.osaka-u.ac.jp

The Institute for NanoScience Design (INSD) prepares various kinds of education and training programs aimed at passing on the accumulated knowledge of nanotechnology and nanomaterials to graduate school students and younger scientists who are expected to design and develop new fields for the future of science and technology. The INSD has recently set up a new graduate-school minor course program, the evening refresher course program, the summer training program and the short-term exchange program. They offer a series of lectures, some of them in the form of distance education, and offer satellite divisions around Japan as well as over Japan and even overseas in English. In addition to the lecture courses, the students can join in intensive hands-on training programs using modern facilities, allowing them to design, fabricate, measure, and characterize nano-materials and nano-devices. Project-based learning is also a feature of the INSD’s programs as it collaborates with the Academia-Industry Liaison Consortium. These programs are conducted by joint groups of lecturers and researchers belonging to six graduate schools, engineering and science and includes students related to nano science and nano-engineering in Osaka University.

www.nims.or.jp/en

www.glocol.osaka-u.ac.jp/en

Global Collaboration Center (GLOCOL) is an academic institution dedicated to research, teaching and social engagement in global and local agendas involving trans-cultural, transnational and transregional issues. Founded in 2007, its 15 full-time researchers currently work under the directorship of Professor OHMISHI Kazuhiro. We at GLOCOL, Local Laboratory of Culture and Economy (LLCE) and our projects is focused on LLCE’s mission as its basic goal is to attain symbiosis co-existences among the various fields of economic, social, political, cultural relations and biophysical evolution of all the whole world. This goal cannot be achieved solely by means of purely scientific technological investigations. Complex global problems require new governance and policy approaches are required in order to take into account not only the multiplicity of human values and recognition of the environment, but also the human values, geopolitical, ecological, biological phenomena on earth from GLOCOL’s research, we aim to consider interdisciplinary methods, combining inspirations from the arts and the sciences in unique ways to explore the issues at hand from multifold perspectives. Graduate student staff at GLOCOL, work in joint research projects, collaboration with researchers all over the world. Our current large scale international and international academia-society projects include one funded by SATREPS (Science and Technology Research Partnership for Sustainable Development), which aims to investigate the social, ecological and biological factors leading to the development and transmission of drug resistant bacteria in Viet Nam and to develop effective monitoring procedures for combating the problems in the long run. We are undertaking a major project on Food Security funded by Grants in Aid for Global COE Program.

GLOCOL also offers seven programs in Osaka University’s Graduate Program for Advanced Interdisciplinary Studies in collaboration with the Center for Globalization, Global Society, Human Security, and Development, UPLiP Expert Development Program, Global Interpreting and Translation, Issues and Research on Contemporary China, and Local Environment of East Asia. All these programs combine courses from different disciplines, and ask graduate students to acquire this state of art knowledge from experts belonging to different departments and institutions.

One of the unique features of GLOCOL as an academic institution can be that it has an open and flexible mission in order to facilitate social engagement. We seek to serve society by not only conducting research and education, but also by getting closely involved in activities outside the academic institute in order to translate our research and teaching into social engagement practices and to gain feedback from the world. Under these circumstances, GLOCOL initiated the Japan International Cooperation Agency (JICA) for international cooperation in post-conflict and developing countries. In partnership with non-governmental organisations, we have made an effort in relief efforts immediately after Great East Japan Earthquake (Tōhoku Earthquake) in 2011, and continue to support those affected in the Tōhoku region (Fukushima, Miyagi and Iwate prefectures). Particular attention is paid to migrant communities in these areas to provide the people with information regarding disaster prevention in their own languages, and to offer the Japanese residents opportunities to befriended their Hitozito alien neighbors. We host and participate in social-cum-academic events to foster transnational communication at over Japan to support the country in its path towards global coexistence.
National Joint-Use Facilities

Research Center for Nuclear Physics

The Research Center for Nuclear Physics (RCNP) was founded in 1971 as a national research center for nuclear physics. The aim is to promote and perform world-level research in nuclear and particle physics using advanced accelerators and related facilities in order to answer basic questions such as "How are quarks confined in a nucleus?", "How are various nuclei formed in the universe?" and "Why do the matter dominate over the anti-matter?". RCNP operates the Ring cyclotron in Suita campus, the Laser- Electron facility at SPring-8, underground facilities at Kamioka, and a super-computer for international collaborative researches. The current major activities are: (1) studies of the properties of nuclear forces and mesons in nuclei by using a high resolution proton beam and heavy ion beam from the Ring Cyclotrons, (2) studies of the quark and gluon properties in hadrons by using a high-energy polarized photon beam at SPring-8, and (2) studies of the properties of elementary particles to understand how our universe was created.

Osaka University Hospital

Osaka University Hospital started in 1869 at Daiifu-ji Temple as a provisional hospital. Since then, the hospital has continued to grow with several reorganizations along the way. The hospital is now one of the leading medical institutions in Japan, contributing to a wide range of fields in clinical medicine. It is renowned for the recent pioneering role in advanced emergency medicine, medical quality management and innovative medical translational research in cancer immunotherapy, gene therapy, tissue engineering and transplantation, as well as healthcare robotics.

Osaka University Dental Hospital

For over a half century since the establishment in 1953, Osaka University Dental Hospital has been expanding and enriching itself to respond to the needs of society with its basic philosophy "To promote education and research in oral medicine through dental practice, and devote to development of oral health care.” Osaka University Dental Hospital consists of the three main clinical divisions; Division for Tooth and Supporting Tissues Diseases, Division of Prosthodontics and Orthodontics, and Division for Oral and Maxillofacial Diseases, associated with the central clinical facilities. Recently, a highly-advanced Center for Translational Dental Research has been established, where the most advanced dental health care technologies are put into practice. The Cell Processing Center (CPC) is included in this facility and preclinical research for dental tissue engineering is in progress at the center.
Kaitokudo for the 21st Century

In 1724, a gakumonsho [a place for study] called Kaitokudo was established in the city of Osaka. In those days such gakumonsho were, in general, founded by influential samurai or fiefdoms for the purpose of educating samurai. Kaitokudo, however, was founded and financed by five powerful merchants for the benefit of members of the merchant class. Moreover, Kaitokudo was not merely a place for educating merchants; it boasted the highest caliber research achievements of that age. Present-day Osaka University traces its spiritual origins back to Kaitokudo and to Tekijuku, a gakumonsho founded by Ogata Koan in 1838.

To realize in our time the ideals that Kaitokudo aspired to, Osaka University launched Kaitokudo for the 21st Century in April 2008. Kaitokudo for the 21st Century not only informs Osaka people as to the contributions Osaka University is making to society, but also offers cultural programs to the local community. It also plays the role of coordinator, listening to the local community’s opinions and requests and reflecting them in the university’s activities.

Its main office is in the Osaka University Hall on Toyonaka Campus. The building contains a communication gallery displaying Osaka University’s intellectual activities as well as a multi-purpose studio for holding various events.

Teaching and Learning Support Center (TLSC)

Teaching and Learning Support Center (TLSC) is a campus organization that was established in June, 2013 by the Special Management Grants for ‘Enhancement of internationally outstanding education and research center facilities’ from the Ministry of Education, Culture, Sports, Science and Technology. The mission of TLSC is to promote and support the development and enhancement of teaching and learning at Osaka University. The center also focuses on the development of an active learning environment on campus.

In addition, a number of universities have established units also work in coordination with the counseling rooms for nurturing leadership.

This center, previously known as the Student Support Station but renamed as the “Support Center for Campus Life” on June 1, 2013, provides counseling services to help students solve their personal problems and also provides support for their extra-curricular social activities. This center consists of three units: Student Disability Services, Student Counseling and Consultation Services, and Career Development Services. These units also work in coordination with the counseling rooms at each school and the student counseling room at the Health Care Center.

Osaka University Nakanoshima Center

Osaka University was originally founded in Nakanoshima thanks to the enthusiasm of the Osaka inhabitants and continued efforts of the local people. At present, various urban regeneration projects are being developed there, and in April 2004, in a way that inherits its unique history, the ‘Osaka University Nakanoshima Center’ (ONC) was founded.

Within the center itself, halls, lecture theaters, seminar and conference rooms are open to university faculty as well as the general public. For example, lectures are sometimes given by faculty at the University and ‘Osaka University Open Lecture’ was the first course of its kind aimed at the general public.

The University not only hosts cultural and academic lectures but also acts as a lecture venue for the general public and co-hosts various events with the private cultural center. ONC has become an academic, cultural and educational ‘space’ for learning and exchange.

In addition, a number of universities have established satellite campuses within the center giving expert lectures to citizens to help shape and improve their community and society as a whole.

Support Center for Campus Life

This center, previously known as the Student Support Station but renamed as the “Support Center for Campus Life” on June 1, 2013, provides counseling services to help students solve their personal problems and also provides support for their extra-curricular social activities. This center consists of three units: Student Disability Services, Student Counseling and Consultation Services, and Career Development Services. These units also work in coordination with the counseling rooms at each school and the student counseling room at the Health Care Center.

In addition to providing high-quality student support, the Support Center for Campus Life issues newsletters and hold Station Cafes regularly in order to provide opportunities for students to get together. As social activity support, this center holds sign language classes, report and opinion exchange sessions for volunteer activities in earthquake restoration support, and programs for nurturing leadership.
Overseas Centers
North American Center, European Center, ASEAN Center, East Asian Center

Osaka University aspires to become one of the world’s most advanced universities and based on exchange agreements with distinguished academic institutions, we intend to further strengthen student exchange activities through international student inbound activities and the active promotion of overseas study for Japanese students. In particular, Osaka University places great importance on nurturing global human resources with excellent communication skills who can demonstrate leadership skills in the international society. To this end, we have established four overseas centers to support the exchange of students. Furthermore, we support alumni activities in several regions and strive to expand the networks in the local areas.

North American Center (San Francisco Office)
www.osaka-u-sf.org/en
The North American Center has opened an office in San Francisco to support the university’s activities in North America. The center supports overseas research, exchange and short-term summer programs. It offers information about international programs and provides support to Japanese and international students with regard to program matching activities. In order to increase student motivation to study abroad, live lectures are broadcast from San Francisco and through such distance learning activities we actively promote the deployment of students overseas. The North American Center supports alumni activities and strives to expand its international network with the cooperation of alumni members in North America.

European Center (Groningen Office)
www.osaka-u-groningen.org/en
The European Center has established an office in Groningen, the Netherlands, to support the university’s activities in Europe. The center supports overseas research, exchange and short-term summer programs. In particular, the European Center offers collaborative language programs with University of Groningen as a first step appetizer program to encourage long-term overseas study. The European Center supports overseas alumni activities and aims to expand its international network with the cooperation of the alumni members in Europe.

ASEAN Center (Bangkok Office)
www.osaka-u-bangkok.org/Eng
The ASEAN Center has established an office in Bangkok, Thailand, to support the university’s activities in Southeast Asia. The center aims to recruit outstanding students to Osaka University from Thailand and neighboring countries through active promotional activities making use of the local network. Through the recruitment of outstanding international students at Japan study fairs, we aim to enhance the overall presence of Osaka University in the region. The ASEAN Center also supports alumni activities and we aim to expand its international reach with the cooperation of the alumni members in Southeast Asia.

East Asian Center (Shanghai Office)
www.shanghai-center.osaka-u.ac.jp
The East Asian Center has established an office in Shanghai, China to support the university’s activities in East Asia. The center aims to recruit outstanding students to Osaka University from China and neighboring countries through the active promotion of public relations activities making use of the network in the local area. We aim to enhance the overall presence of Osaka University through the recruitment of outstanding international students at Japan study fairs. The East Asian Center also supports alumni activities and we strive to expand the international network with the cooperation of the alumni members in East Asia.
Academic Programs and Admission

Degree Programs

Undergraduate Program (Bachelor’s Degree Program)

Each of the eleven Schools offers an undergraduate program. Students enrolled in one of these programs will study for a period of four years. Students enrolled in the Faculty of Medicine’s Medical School, the School of Pharmaceutical Sciences’ Department of Pharmacy, and the School of Dentistry will study for a period of six years. All undergraduate students are required to undergo the General Education Program (a program that covers a wide range of specialty and liberal arts courses) for their first three semesters (one and a half years) after entering the university. The General Education Program is offered at the Toyonaka Campus.

Application Conditions for Un-sponsored International Students (except for degree programs in English):

International applicants (students from outside of Japan) must meet one of the following criteria by March 31st of their year of enrollment.

• Those who have completed a standard 12-year school education curriculum of a country other than Japan.

• Those who are at least 18 years of age and who have passed an examination in a country other than Japan which certifies that they have scholastic ability equivalent to a person who has completed a standard 12-year school education curriculum in the said country.

• In principle, international applicants required to take the TOEFL and the “Examination for Japanese University Admission for International Students” (EJU), conducted by the Japan Student Services Organization (JASSO), having taken the designated subjects in the determined period of time, and having scored at least the minimum amount of points determined by the faculty or school one is applying to. The Faculty of Medicine’s School of Allied Health Sciences, the School of Dentistry, and some majors in the School of Foreign Studies do not require the TOEFL.

• The most current details regarding application requirements and entrance methods can be confirmed at Osaka University’s website. It is recommended that one contact the Admission Division before applying if one has further questions.

(www.osaka-u.ac.jp/en/admissions)

Academic Programs and Admission

Four Types of International Students

Japanese Government Scholarship Students (Monbukagakusho Scholarship)

Japanese Government Scholarship Students are able to enter Japanese universities with an exemption of the entrance examination fee, enrollment fee and tuition fees. Furthermore, they are granted a scholarship stipend every month. Japanese Government Scholarship Students are able to enroll in Osaka University as “Undergraduate Students,” “Research Students (graduate students),” “Japanese Studies Students” or “Research Training Students.”

Before coming to Japan, there are two ways of applying to this program: “Embassy Recommendation” and “University Recommendation.” For further detailed information including application conditions and procedures, please contact the Japanese Embassy located in your home country for “Embassy Recommendation,” or the relevant office of the specific school/graduate school, or the faculty member you would like to have as an academic supervisor for “University Recommendation.”

Foreign Government Sponsored Students

The Japanese Government is currently accepting students from these universities for one year or less, granting entrance examination fees, enrollment fees and tuition fee waivers. During the exchange period, short-term exchange students will continue their enrollment at their home university. Depending upon their home university, credits earned at Osaka University can be counted as required credits for graduation. For further detailed information including application conditions and procedures, please contact the office in charge of international student exchange at the university you are currently enrolled at.

The universities marked with a “*” among those listed on p.112-113 fit the universities described here.

Ungsponsored International Students (Privately Financed International Students)

International students not receiving a scholarship from the Japanese Government or from the government of their own countries are categorized as “Unponsored International Students.”

Short-term Exchange Students (from partner universities)

Osaka University has formed student exchange agreements with universities abroad, accepting non-degree exchange students from these universities for one year or less, granting entrance examination fees, enrollment fees and tuition fee waivers. During the exchange period, short-term exchange students will continue their enrollment at their home university. Depending upon their home university, credits earned at Osaka University can be counted as required credits for graduation. For further detailed information including application conditions and procedures, please contact the office in charge of international student exchange at the university you are currently enrolled at.

Graduate Program (Master’s Degree and Doctor’s Degree Programs)

Each of the sixteen graduate schools at Osaka University implements graduate programs. These graduate programs are generally composed of two courses: the Master Course (first two years) and the Doctor Course (a continuation for those who have completed the Master Course). Students who have completed the Master Course are granted a master’s degree; students who have completed the Doctor Course will receive a doctor’s degree.

The Doctor Course generally takes place after the Master Course and has a duration of three years. The Doctor Course for the Graduate School of Medicine (except for the Division of Health Sciences), the Graduate School of Dentistry, and the Graduate School of Pharmaceutical Sciences (major in Medical Pharmacy) have a duration of four years. The Graduate School of Frontier Biosciences has a 5-year intensive doctor course. The Law School program has a duration of three years, and upon completion students are granted a Juris Doctor’s Degree.

Main Application Conditions for Un-sponsored International Students:

For the most recent details regarding the entrance selection method into the university, refer to the website of the graduate school concerned.

Main Application Conditions for Master Courses, the Doctor Course of the Graduate School of Frontier Biosciences and the Law School:

One of the following conditions must be fulfilled.

• Completed 16 years of schooling in a country other than Japan

NECESSARY LANGUAGE ABILITY

Degree courses are regularly held in Japanese. International students must have acquired the appropriate required level of Japanese ability in order to keep up with their classes by the time of enrollment. Some of our undergraduate programs, graduate programs, short-term exchange programs are in English. (See p. 99-100)

For those who wish to conduct specific research activities, there are many fields of research in the field of science where research is conducted in English and English speaking researchers are accepted as visiting scholars or graduate school students. For further information, please check with the faculty member of Osaka University you would like to have as a co-researcher or as an academic supervisor.

Supplementary Japanese courses are offered for international students and visiting scholars at Osaka University, but there are no Japanese pre-training courses for unponsored international students.

For information on local Japanese language schools, please contact the Japanese Embassy in your home country.

Main Application Conditions for Doctor Courses: Either of the following conditions must be fulfilled.

• Obtained a master’s degree or professional degree

• Recognized and approved as having academic ability equivalent to the above by the Ministry of Education, Culture, Sports, Science and Technology or the graduate school concerned

Main Application Conditions for Doctor Courses (Graduate School of Medicine excluding major in Health Sciences, Graduate School of Dentistry, major in Medical Pharmacy of the Graduate School of Pharmaceutical Sciences)

One of the following conditions must be fulfilled.

• Completed 18 years of schooling in a country other than Japan. However, to enter the Doctor Course in Medicine and Dentistry students must have graduated from a university School of Medicine, School of Dentistry, School of Pharmacy, or School of Veterinary Medicine (course requiring six years of study for graduation)

• Graduated from a Japanese university School of Medicine, School of Dentistry, School of Pharmacy, or School of Veterinary Medicine (course requiring six years of study for graduation)

• Recognized and approved as having academic ability equivalent to the above by the Ministry of Education, Culture, Sports, Science and Technology or by the graduate school concerned

For more information, please visit Osaka University’s website:
(www.osaka-u.ac.jp/en/admissions/faculty/expense)
Degree Programs in English

The Human Sciences All-English Undergraduate Degree Program (BS/BE) offers students an interdisciplinary program in English with two integrated majors: Global Citizenship and Contemporary Japan. In the first three semesters students complete foundation courses that equip them with a range of transferable skills, including data processing, research methodology and critical thinking. At the same time, we introduce students to a number of disciplinary approaches to studying global citizenship and contemporary Japan. Students will also study the Japanese language and can register for some regular Human Science Courses if their proficiency level is sufficient. From the fourth semester students will take advanced courses as they build specialized knowledge in their chosen major. For more details see g30.hus.osaka-u.ac.jp.

The Chemistry-Biology Combined Major Program (BS/BE) will offer students a new opportunity to learn two fundamental and interacting fields and prepare them for the challenges of rapidly advancing scientific frontiers (Admission in October).

(www.icou.osaka-u.ac.jp/cbcmtp)

The Special Integrated Science Course (MS/Ph.D.) is a graduate program for students in biology, chemistry, and macromolecular science. The program is designed to train the next generation of cutting-edge scientists (Admissions in October and April).

(www.bio.sc.osaka-u.ac.jp/global30/SISC)

The International Physics Course (MS/Ph.D.) is a graduate course for students who have completed an undergraduate major in physics or the equivalent. The course is designed so that students can work as active members in international collaborations, whether in theory or experiments, for example with large-scale facilities (For admissions, please refer to the website below).

(www.rcnp.osaka-u.ac.jp/IPC)

Frontier Biotechnology is a five-year program for master’s and doctor’s degrees which aims to expose young scientists to state-of-the-art research and in-depth knowledge of advanced biology, chemistry and physics to harness the potential of biotechnology. This program is also for students having completed the Chemistry-Biology Combined Major Program.

(www.bio.eng.osaka-u.ac.jp/fb_inter_program.html)

Engineering Science promotes trans- and multi-disciplinary topmost research and education as the “Engineering Science 21st Century” Program among emerging specialized areas of science and technology such as materials science, chemical engineering, chemistry, materials physics and nanotechnology; mechanical science/engineering, nonlinear mechanics, mechatronics, bio-mechanics/physics and biomedical engineering; and system innovation including opto-electronics, systems science and applied information, robotics, and mathematical science.

(www.es.osaka-u.ac.jp/en/programs/admissions.html)

Maritime and Urban Engineering

The Graduate School of Engineering, Osaka University, offers an international course using English as the language of instruction toward advanced degrees in Maritime and Urban Engineering. The aim of this course is to educate a new generation of young scientists with fundamental knowledge and state-of-the-art research skills in this area to realize safer and more efficient construction, infrastructure and transport systems with a cleaner environment.

(http://www.ga.eng.osaka-u.ac.jp/english)

The Quantum Engineering Design Course provides students with up-to-date and world-class research techniques to advance Quantum Engineering Design in response to global, technological and environmental challenges. The core divisions are “frontier mathematical methods,” “education of emergent material function” and “realization of new generation functional materials.”

(www.dyne.ap.eng.osaka-u.ac.jp/QEDC/index.html)

Maple

Maple is a special Japanese Culture-Language program designed to raise talented people capable of understanding Japan in a diverse way from a comparative and contrastive viewpoint. Participating students will be able to select Japanese courses from elementary-intermediate to advanced levels based on their Japanese proficiency. Students will also take comparative research classes conducted in English, comparing and contrasting the language and cultural differences between their home country and Japan, as well as take specialized Japanese culture and language seminars focusing on understanding intercultural differences with Japanese students. In addition to this, independent research may also be conducted. Every year, applications must be submitted to Osaka University through the applicant’s home university by the beginning of November (for those starting in April) or by late March (for those starting in late September).

(ex.isc.osaka-u.ac.jp/oussep)

Non-Degree Programs

Programs for Short-Term Exchange Students

There is a wide variety of one-year (or less) short-term programs prepared for international students from the universities abroad that have student exchange agreements with Osaka University (so called as “short-term exchange students”).

Within these programs, there are a number of classes that Japanese students may also participate in. Through these classes, close inter exchange with Japanese students can be acquired.

For applications and inquiries on these programs, please contact the appropriate office in charge of international student exchange at the university you are currently enrolled in.

OUSSEP

(Osaka University Short-term Student Exchange Program)

OUSSEP has been designed to give students from overseas universities who have not studied Japanese an opportunity to earn transferable credits at Osaka University under the close coordination of the Center for International Education and Exchange. 3rd and 4th year undergraduate students of their home university can study a variety of subjects in fields such as the medical sciences, natural sciences, social sciences, arts and foreign studies in English for 1 year (2 semesters) (Full-year OUSSEP) or half a year (1 semester) (Half-year OUSSEP), from April or late September. In addition to this, independent research may also be conducted. Every year, applications must be submitted to Osaka University through the applicant’s home university by the beginning of November (for those starting in April) or by late March (for those starting in late September).

(ex.isc.osaka-u.ac.jp/oussep)

Maple

Maple is a special Japanese Culture-Language program designed to raise talented people capable of understanding Japan in a diverse way from a comparative and contrastive viewpoint. Participating students will be able to select Japanese courses from elementary-intermediate to advanced levels based on their Japanese proficiency. Students will also take comparative research classes conducted in English, comparing and contrasting the language and cultural differences between their home country and Japan, as well as take specialized Japanese culture and language seminars focusing on understanding intercultural differences with Japanese students. In addition to this, independent research may also be conducted. The program is held from late September to August of the following year (2 semesters), and mainly accepts 3rd and 4th year undergraduate students from their currently enrolled university.

(ex.isc.osaka-u.ac.jp/program/m)

Academic Programs and Admission

FrontierLab@OsakaU

The FrontierLab@OsakaU program is designed to nurture originality in students by offering potential research directions in a wide range of fields and emphasizing hands-on laboratory experience. Each participant will be assigned to a particular research group in one of Osaka University’s internationally renowned science and technology fields. Thematic studies will be conducted through experiments, peer consulting, group work and interactive discussions under the close supervision of the faculty. The program will be conducted in English or Japanese.

The program focuses on foreign undergraduate students who have completed their 1st and 2nd year of study at their enrolled university.

The following two plans are offered:

Plan 1:

i. Applicable for both undergraduate and graduate students

ii. Fixed period: 1 semester (15 weeks) or 2 semesters

iii. Participants will conduct credited research supervised by faculty members, and have the option to take other credited courses (including Japanese language subjects)

Plan 2:

i. Applicable for graduate students only

ii. Flexible period (3 to 12 months)

iii. Participants will conduct research supervised by faculty members, but are unable to participate in coursework that will grant credits

iv. Research work will be evaluated by an academic supervisor and reported to the participant’s home university

Students from universities abroad that do not have student exchange agreements with Osaka University are also eligible to participate in the program if the tuition fee to Osaka University is paid.

(www.osaka-u.ac.jp/en/international/inbound/exchange_program/frontier_lab)

iExPO (Immersion Exchange Program Osaka)

This program is intended for undergraduate/graduate international students to study for less than one year, selecting and attending classes that are originally intended for Japanese students. Graduate students may also focus on research under the guidance of a faculty member for less than one year. Classes eligible for attending are determined by each school/graduate school.

Research Students

The research student system enables students to enter schools or graduate schools to research a specific subject/field as “research students,” with the permission of the schools or graduate schools concerned. However, students enrolled are unable to receive a degree or credits. In addition to schools and graduate schools, research institutes, joint-use facilities, and national joint-use facilities also accept research students.

For further information, please contact the relevant school/facility.
Global 30 – 5 years of efforts and outcomes forward internationalization

In 2009, the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) launched the Project for Establishing Core Universities for Internationalization, known as Global 30, to increase the international competitiveness of Japanese universities in the context of high levels of global student mobility. Osaka University was selected by MEXT as one of the 13 core universities to implement Global 30. Since then, Osaka University has been promoting internationalization more actively by establishing degree programs taught in English, preparing supportive environments for international researchers and students, and conducting activities with other Japanese universities through certain networks.

Degree Programs Taught in English
Together with the existing four programs taught in English at the graduate level, two new undergraduate and graduate degree programs have been established. [Undergraduate Degree Program]
• Chemistry-Biology Combined Major Program
• Human Sciences All-English Undergraduate Degree Program
[Graduate Degree Program]
• Special Integrate Science Course
• International Physics Course
At present, 147 students from countries and regions of the world, including China, Korea, the USA, the UK and Japan are studying in Global 30 degree programs (as of January 1, 2014).

Activities with other Japanese Universities through Networks
The Osaka-Kobe University Network for Internationalization was formed to promote cooperative relationships in internationalization among Osaka University, Kansai University and Kwansei Gakuin University. To date, following events are organized and held.
• Joint Education Fair (Thailand, Vietnam, Indonesia)
• Korea-Japan Student Workshop
• Workshop with Companies Recruiting International Students
• Symposium on Internationalization
• Staff Development Conference
In partnership with industry, the Global Human Resources Utilization Study Group has been launched by the Kansai Economic Federation in collaboration with staff at Osaka University and other leading universities in Kansai region, governmental organizations and other related companies who are members of the study group.

Supportive Environments for International Researchers and Students
To offer assistance to international students, as well as scholars, Osaka University established the Support Office in 2007 and its function was expanded in October 2009. International students are able to receive comprehensive assistance before and after their arrival in Japan such as help with visa procedures, searching for accommodation and other necessary post-arrival procedures.

Campus Life

The Best Facilities for the Best Students
Osaka University’s three campuses, Suita, Toyonaka, and Minoh, are connected by monorail and a free shuttle bus service. Each campus has facilities that are needed in daily life such as cafeterias, food stores, bookstores, stationary stores, a housing support corner, travel centers, and ATMs. And Suita and Toyonaka campuses have post offices and barbershops.

As a result, students can enjoy a convenient campus life while undertaking in their studies. Each campus has a health care center where consultation services on health and medical care (internal medicine) is offered. Every year, regular medical checkups for students and medical consultations are given at the center.
Club Activities

Enrich your School Life with Sports, Clubs, and Cultural Activities

Osaka University offers a vast array of sports facilities such as athletics grounds, gymnasiums, swimming pools and more. Of the athletic fields on Osaka University’s three campuses, the field on Suita campus was recently resurfaced making it the University’s first all-weather area with artificial turf.

Osaka University has 59 sports groups, which range from traditional martial arts to modern outdoor sports. There are also 68 extracurricular cultural groups at the University. Students are able to travel beyond their fields of research and deepen their friendships through these activities. Osaka University emphasizes activities that nurture human relationships through several competitions, and supports students through the maintenance of equipment and facilities.

Support and Other Information

Fees and Financial Support

<table>
<thead>
<tr>
<th>Category</th>
<th>Entrance Fee</th>
<th>Enrollment Fee</th>
<th>Tuition Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Student</td>
<td>17,000 yen</td>
<td>262,000 yen</td>
<td>536,800 yen/year</td>
</tr>
<tr>
<td>Graduate Student</td>
<td>30,000 yen</td>
<td>262,000 yen</td>
<td>536,800 yen/year</td>
</tr>
<tr>
<td>Law School Student</td>
<td>36,000 yen</td>
<td>262,000 yen</td>
<td>804,000 yen/year</td>
</tr>
<tr>
<td>Research Student</td>
<td>8,850 yen</td>
<td>84,600 yen</td>
<td>26,900 yen/month</td>
</tr>
<tr>
<td>Auditor / Special Auditor</td>
<td>8,850 yen</td>
<td>28,200 yen</td>
<td>14,400 yen/credit</td>
</tr>
</tbody>
</table>

*As of October 1, 2013. These fees may be subject to change.

Enrollment fee and Tuition Fee Exemption / Reduction

Unsponsored international students (full-time private students in the undergraduate/graduate courses) who have difficulty in paying the enrollment fee and tuition fee and have an outstanding academic record may apply for enrollment fee and tuition fee exemption. The ratio of enrollment and tuition deduction is either full reduction or half reduction. Enrollment and tuition fees can be exempted within the limit of our budget.

Scholarships

Offered by the Japan Student Services Organization (JASSO), local governments and private scholarship organizations, there are scholarships provided to unsponsored international students with outstanding academic records who have financial difficulty. The amount of most scholarships varies from 50,000 to 100,000 yen per month.

Currently, about 40% of the unsponsored international students at Osaka University are receiving some form of financial aid. The applications for many scholarships are processed through the administrative office at the school/graduate school where students are enrolled. Information on scholarships is also available through JASSO (www.jasso.go.jp/study_/scholarships_e.html). Most of these programs may be applied for after entering the university.

Please note that the scholarships listed below for short-term exchange students require applicants to apply through their currently enrolled university that have student exchange agreements with Osaka University before coming to Japan.

- Osaka University Scholarship for Exchange Study
- JASSO Scholarship for Short-term Study in Japan

Cost of Living

<table>
<thead>
<tr>
<th>Expenditure</th>
<th>Cost Per Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of Food</td>
<td>30,000 yen—40,000 yen</td>
</tr>
<tr>
<td>Living Cost, Utilities, Travel Expenses</td>
<td>50,000 yen—60,000 yen</td>
</tr>
<tr>
<td>Study Expenses</td>
<td>6,000 yen—12,000 yen</td>
</tr>
<tr>
<td>Entertainment, Clothing</td>
<td>21,000 yen—22,000 yen</td>
</tr>
<tr>
<td>Other Miscellaneous Expenses</td>
<td>14,000 yen—23,000 yen</td>
</tr>
<tr>
<td>Total (Per Month)</td>
<td>121,000 yen—157,000 yen</td>
</tr>
</tbody>
</table>

Health Insurance

International students who reside legally in Japan longer than three months are required to join the insurance program called Kokenrin Kenko Hoken (National Health Insurance). They can enroll in the program at the City Office where their address is registered. By paying the premiums and presenting the certificate, the insurance covers about 70% of the expenses for most of medical care and hospitalization.

Accommodation

Dormitory for International Students (Osaka University Dormitory, Public Dormitory)

The number of residences being managed by Osaka University and public organizations is limited. The rent for these facilities is comparatively cheaper than private housing.

(www.osaka-u.ac.jp/en/guide/international/residence.html)

Osaka University Residence Halls

<table>
<thead>
<tr>
<th>Residence</th>
<th>Osaka University Dormitory</th>
<th>Osaka University Dormitory</th>
<th>Osaka University Dormitory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Type</td>
<td>Single</td>
<td>Single</td>
<td>Family</td>
</tr>
<tr>
<td>No. of units</td>
<td>26</td>
<td>119</td>
<td>13</td>
</tr>
<tr>
<td>Monthly Rent</td>
<td>16,000 yen</td>
<td>24,000 yen</td>
<td>14,200 yen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residence</th>
<th>Minoh International Student Dormitory</th>
<th>Minoh International Student Dormitory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Type</td>
<td>Single</td>
<td>Couple</td>
</tr>
<tr>
<td>No. of units</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Monthly Rent</td>
<td>5,900 yen</td>
<td>11,900 yen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residence</th>
<th>Toyonaka Campus International House</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Type</td>
<td>Single</td>
</tr>
<tr>
<td>No. of units</td>
<td>31</td>
</tr>
<tr>
<td>Monthly Rent</td>
<td>5,900 yen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Residence</th>
<th>Suita Student Dormitory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room Type</td>
<td>Single</td>
</tr>
<tr>
<td>No. of units</td>
<td>46</td>
</tr>
<tr>
<td>Monthly Rent</td>
<td>5,900 yen</td>
</tr>
</tbody>
</table>

*As of April 1, 2014. These fees may be subject to change.
Other Alternatives

Due to the limited capacity at University dormitories, most of the international students need to find their housing outside of the campus. Since there are special Japanese customs in this process, it may be difficult to understand when trying to find a place for the first time.

Dormitories operated by international students support organizations: there are some dormitory-type facilities which are usually applied through each administrative office at Schools/Graduate Schools upon an official announcement made by International Student Affairs Division when there are some openings.

Private Housing: Rooms are usually unfurnished. Rents vary according to the location, the size of the apartment, its age, the degree of furnishing, and whether or not there is a view. Looking on the internet or in rental-housing magazines in advance should provide general information about options in the local area. Generally, a six to seven month's rent will be expected as a total initial cost, such as a rental deposit, key money, broker's commission and other fees.

The Support Office for International Students and Scholars at the Center for International Education and Exchange (see p. 110) provides pre-arrival scholarships offered by the Japanese government for former foreign students in Japan, for former foreign students of the same nationalities with a background in Japan.

In addition to OUISA, there are many international student associations at Osaka University. Students can keep contact with those friends who share the same backgrounds while they study at Osaka. It must be added that IRIS works closely with these student associations. IRIS, OUISA, and these student associations, in cooperation with other concerned people, all work in support of international students at Osaka University.

Apartments

<table>
<thead>
<tr>
<th>Type</th>
<th>Deposit</th>
<th>Rent Per Month (Excluding Utilities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio (One Room)</td>
<td>100,000yen – 400,000yen</td>
<td>50,000yen – 70,000yen</td>
</tr>
<tr>
<td>Apartment (Two Rooms)</td>
<td>150,000yen – 500,000yen</td>
<td>50,000yen – 120,000yen</td>
</tr>
</tbody>
</table>

Support and Exchange Activities

At Osaka University, we are endeavoring to equip and sustain systems designed to help the study and research of international students and visiting scholars progress smoothly.

Counseling, Advice

With the cooperation of counselors and special academic advisors, the Center for International Education and Exchange provides international students with various types of advisory services related to living in Japan and studying at Osaka University. Students may also use advising rooms for international students that are provided independently by some of the schools/graduate schools (separate from the service above).

Japanese Language and Culture Programs

The following programs are offered:

- Japanese language courses for international students (Provided by the Center for International Education and Exchange)
- Japanese programs for specialized fields, implemented by some of the scientific and engineering schools/graduate schools
- Daily life Japanese programs for visiting scholars and also for the spouses/children of aged 16 or over of international students and researchers or employees (CHOJ Japanese Language Program) (Provided by the Center for International Education and Exchange)
- High-level Japanese learning programs designed for undergraduate Japanese Government Scholarship Students, specializing in Japanese studies (provided by the Center for Japanese Language and Culture)
- Japanese Culture-Language programs for short-term exchange students (Maple Program) (Provided by the Center for Japanese Language and Culture)
- Japanese preliminary language programs for Japanese Government Scholarship Students and KOSMOS (Korean Students of Science Major at Osaka University with Special Scholarship) students (Provided by the Center for International Education and Exchange the Center for Japanese Language and Culture)

Exchange Activities

International students can broaden friendship and communication with both international and Japanese students, as well as the faculty, staff and local residents by actively participating in a variety of the following support and exchange programs, mainly organized by the Center for International Education and Exchange.

- Cultural exchange events for international students and local residents
- Home visits (a chance to participate in Japanese daily life)
- International understanding programs with local schools
- Inter-exchanges between international students and Japanese students (parties, campus tours, help with the Japanese language, and school and local events and festivals), provided by the international students association and student volunteer groups

Tutor Program

One-on-one peer tutors are available to undergraduate students for their first two years in Japan. The tutors are mainly graduate students, majoring in courses relating to the major of the respective international student, and help the international students improve their Japanese skills and provide guidance for matters outside classes.

OUISA (Osaka University International Student Association) & International Student Associations at Osaka University

OUISA supports the lives of international students with their needs in mind. OUISA works closely with IRIS (International Room for International Students) in organizing various kinds of events and activities for local students and for international activities. Every year OUISA selects the committee members in managing and running OUISA for that year. By joining OUISA activities, which are often in close cooperation with B.S.P (Brothers and Sisters Program), students get to meet and make friends from around the world. Having a network of good friends and community will help them in their student life at Osaka.

Useful Links

- Osaka University
- www.osaka-u.ac.jp/en
- Graduate & Undergraduate Schools & Facilities
- www.osaka-u.ac.jp/en/academics
- Admissions
- www.osaka-u.ac.jp/en/admissions
- Prospective Students
- www.osaka-u.ac.jp/en/for-examinee
- General Information of Financial Aid
- www.osaka-u.ac.jp/en/guide/student/tuition
- Overseas Centers
 - (San Francisco, Groningen, Bangkok and Shanghai)
 - www.osaka-u.ac.jp/en/international/action/branch.html
- Partner Universities

Other Useful Links

- JASSO (Japan Student Services Organization)
 - Information on Study in Japan, Japan Education Fair, etc.
 - www.jasso.go.jp/index_e.html
- STUDY IN JAPAN
 - Comprehensive guide for prospective students, for foreign students in Japan, for former foreign students
- Japanese Embassies
 - (If you want to obtain the information on Japan pre-arrival scholarships offered by the Japanese Government, please refer to the Japanese Embassy in your country.)
 - www.mofa.go.jp/about/emb_cons/mofaserv.html

Support and Other Information

OSAKA UNIVERSITY
IRIS (Information Room for International Students)

IRIS is where international students can visit anytime when they have questions or problems. As one international student said, “It's my home in Japan.” IRIS always listens and helps students in solving problems. IRIS is also where international students can spend their free time, such as eating lunch and/or chatting with other international and local students, over a cup of coffee or tea.

What is more, IRIS supports various kinds of student activities on international exchanges such as by OUISA (Osaka University International Student Association) and B.S.P. (Brothers and Sisters Program). Furthermore, IRIS works in close cooperation with local communities and schools, such as in organizing home-visit type host family programs and school visit programs.

Support Office for International Students and Scholars

The Support Office offers various types of assistance for international students, scholars and their families, such as assistance with the procedures for their CESR (Certificate of Eligibility for Status of Residence), the search for accommodations, and the additional procedures before and after their arrival in Japan. The Support Office also provides information through monthly orientations for newcomers, handbooks/guidebooks, and a website. The primary goal of the Support Office is to help make the life of our international students and scholars easier and more comfortable, so that they can fully concentrate on their academic activities throughout the duration of their stay in Japan.

For more information, please view the following websites.

Support Office: https://iss-intl.osaka-u.ac.jp/supportoffice

Overseas Alumni

To date, the number of students who have graduated from Osaka University is approximately 125,000 and many are working extensively in various fields throughout the world.

The University has established overseas centers in four locations: North America (San Francisco), Europe (Groningen), ASEAN (Bangkok) and East Asia (Shanghai) as bases for international exchange activities overseas to support local alumni association efforts and to work closely with the alumni themselves.

As a forum of exchange for overseas alumni, the University boasts the Osaka University North American Alumni Association (OU-NAAA), the Osaka University Alumni Association of Europe (OUAAE), the Thai Osaka University Alumni Club (TOUAC) and the Osaka University Shanghai Alumni Association (OUSAA). Furthermore, there are also department, division and school reunions at overseas branches where alumni deepen friendships and further enhance collaboration and cooperation.

Other reunions are also held in various places and graduates are actively warming old friendships in many parts of the world.
OSAKA UNIVERSITY

Academic Exchange Agreements with Universities Abroad

99 Inter-University and 456 Inter-Faculty Exchange Agreements

Osaka University has concluded academic exchange agreements with universities and institutions throughout the world for both inter-university and inter-faculty exchanges. Extensive exchanges of students, researchers and joint research projects are being conducted with these partner institutions.

Mutual tuition waivers may be implemented for students who participate in exchange programs with the universities marked with a *.

Inter-University Exchange Agreements

(as of April 18, 2014)

<table>
<thead>
<tr>
<th>Country / Region</th>
<th>University/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russia</td>
<td>Saint Petersburg State University *</td>
</tr>
<tr>
<td>Finland</td>
<td>Åbo Akademi University *</td>
</tr>
<tr>
<td>Sweden</td>
<td>Karolinska Institutet</td>
</tr>
<tr>
<td></td>
<td>Royal Institute of Technology (KTH) *</td>
</tr>
<tr>
<td></td>
<td>University of Gothenburg</td>
</tr>
<tr>
<td>Denmark</td>
<td>The University of Copenhagen</td>
</tr>
<tr>
<td>UK</td>
<td>The University of Nottingham</td>
</tr>
<tr>
<td></td>
<td>The University of Sheffield</td>
</tr>
<tr>
<td></td>
<td>University of Leeds</td>
</tr>
<tr>
<td></td>
<td>University College London</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Delft University of Technology *</td>
</tr>
<tr>
<td></td>
<td>University of Groningen</td>
</tr>
<tr>
<td>Spain</td>
<td>Universidad Autónoma de Madrid</td>
</tr>
<tr>
<td></td>
<td>University of Valladolid</td>
</tr>
<tr>
<td>France</td>
<td>Centre National de la Recherche Scientifique</td>
</tr>
<tr>
<td></td>
<td>École Nationale Supérieure de Chimie de Paris</td>
</tr>
<tr>
<td></td>
<td>Grenoble Universités (Consortium of Universities in Grenoble)</td>
</tr>
<tr>
<td></td>
<td>Pierre & Marie Curie University</td>
</tr>
<tr>
<td></td>
<td>University of Bordeaux</td>
</tr>
<tr>
<td></td>
<td>University of Strasbourg</td>
</tr>
<tr>
<td>Belgium</td>
<td>Université Libre de Bruxelles (ULB)</td>
</tr>
<tr>
<td></td>
<td>Vrije Universiteit Brussel (VUB)</td>
</tr>
<tr>
<td>Switzerland</td>
<td>École Polytechnique Fédérale de Lausanne (EPFL)</td>
</tr>
<tr>
<td>Austria</td>
<td>University of Vienna</td>
</tr>
<tr>
<td>Egypt</td>
<td>Alexandria University</td>
</tr>
<tr>
<td>Hungary</td>
<td>Eötvös Loránd University (ELTE)</td>
</tr>
<tr>
<td>Thailand</td>
<td>Chiang Mai University</td>
</tr>
<tr>
<td></td>
<td>Chulalongkorn University</td>
</tr>
<tr>
<td></td>
<td>Department of Medical Sciences, Ministry of Public Health</td>
</tr>
<tr>
<td></td>
<td>Kasetsart University</td>
</tr>
<tr>
<td></td>
<td>King Mongkut’s University of Technology Thonburi</td>
</tr>
<tr>
<td></td>
<td>Mahidol University</td>
</tr>
<tr>
<td></td>
<td>Thammasat University</td>
</tr>
<tr>
<td>Mexico</td>
<td>National Autonomous University of Mexico</td>
</tr>
<tr>
<td>Peru</td>
<td>Pontificia Catholic University of Peru</td>
</tr>
<tr>
<td>Brazil</td>
<td>Universidade de São Paulo</td>
</tr>
<tr>
<td>Philippines</td>
<td>Ateneo de Manila University</td>
</tr>
<tr>
<td></td>
<td>De La Salle University</td>
</tr>
<tr>
<td></td>
<td>University of the Philippines</td>
</tr>
<tr>
<td>Austria</td>
<td>Monash University</td>
</tr>
<tr>
<td></td>
<td>The Australian National University</td>
</tr>
<tr>
<td></td>
<td>The University of Adelaide</td>
</tr>
<tr>
<td></td>
<td>The University of Queensland</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Vietnamese Academy of Science and Technology</td>
</tr>
<tr>
<td></td>
<td>Vietnam National University - Ho Chi Minh City</td>
</tr>
<tr>
<td></td>
<td>Vietnam National University, Hanoi</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Institut Teknologi Bandung</td>
</tr>
<tr>
<td></td>
<td>Universitas Gadjah Mada</td>
</tr>
<tr>
<td>India</td>
<td>Indian Institute of Technology Hderabad</td>
</tr>
<tr>
<td>Russia</td>
<td>Saint Petersburg State University *</td>
</tr>
<tr>
<td>China</td>
<td>Beijing Normal University</td>
</tr>
<tr>
<td></td>
<td>Fudan University</td>
</tr>
<tr>
<td></td>
<td>Nanjing University</td>
</tr>
<tr>
<td></td>
<td>Peking University</td>
</tr>
<tr>
<td></td>
<td>Shanghai Jiao Tong University</td>
</tr>
<tr>
<td></td>
<td>The Chinese University of Hong Kong</td>
</tr>
<tr>
<td></td>
<td>Tongji University</td>
</tr>
<tr>
<td></td>
<td>Tsinghua University</td>
</tr>
<tr>
<td></td>
<td>Wuhan University</td>
</tr>
<tr>
<td></td>
<td>Xi’an Jiaotong University</td>
</tr>
<tr>
<td>Taiwan</td>
<td>National Cheng Kung University</td>
</tr>
<tr>
<td></td>
<td>National Chiou Tung University</td>
</tr>
<tr>
<td></td>
<td>National Taiwan University</td>
</tr>
<tr>
<td></td>
<td>National Tsing Hua University</td>
</tr>
</tbody>
</table>

| Central and South America 3 |
| North America 10 |
| Africa 1 |
| Middle East 11 |
| South America 11 |
| Oceania 4 |
| Asia 41 |
| Total 99 |
| Inter-University Agreements |

| Total 456 |
| Inter-Faculty Agreements |

| Mongolia |
| National University of Mongolia |
| Canada |
| McGill University |
| McMaster University |
| The Conference of Rectors and Principals of Québec Universities |
| University of British Columbia |
| University of Toronto |
| USA |
| Cornell University |
| Indiana University |
| Nazareth College of Rochester |
| Purdue University |
| Rice University |
| Texas A&M University |
| The University of Georgia |
| University of California |
| University of Washington |
| Wesleyan College |
| Korea |
| Changwon National University |
| Chonnam National University |
| Chung-Ang University |
| Chungnam National University |
| Gyeongsang National University |
| Hanyang University |
| Pusan National University |
| Seoul National University |
| Yonsei University |

| North America 41 |
| Oceania 9 |
| Europe 162 |
| Total 456 |
| Inter-Faculty Agreements |

| Total 99 |
| Inter-University Agreements |

| Asia 212 |
| South America 11 |
| Central and South America 3 |
| Europe 32 |
| Total 99 |
| Inter-University Agreements |

| Total 456 |
| Inter-Faculty Agreements |

| North America 10 |
| Oceania 4 |
| Europe 16 |
| Total 456 |
| Inter-Faculty Agreements |
Financial Figures

Budget (FY 2013, in millions of Yen)

Revenue
- Management Expenses Grants: 46,524
- Faculty Maintenance Expenses: 18,380
- Revenue from Government Grants and Other Funding: 13,216
- National University Financial and Administrative Center: 148

Grants-in-Aid for Scientific Research (KAKENHI)
- JSPS Fellows: 395
- Research Activity Start-up: 65
- Exploratory Research: 409
- Young Scientists: 98
- Research Activity Start-up: 65
- JSPS Fellows: 395
- Total: 2,916

Revenue
- Long-Term Loan Revenue: 1,529
- University-Industry Cooperative Research Revenue: 22,120
- Donations for Research: 28,361
- Commissioned Research: 1,084
- Total: 30,380

Expenditure
- Facility Maintenance Expenses: 20,662
- Grouped Research Expenses and Endowment Project Expenses: 22,120
- Long-Term Loan Redemption Expenses: 5,113
- Total: 153,526

Revenue
- Management Expenses Grants: 46,524
- Faculty Maintenance Expenses: 18,380
- Revenue from Government Grants and Other Funding: 13,216
- National University Financial and Administrative Center: 148

Grants-in-Aid for Scientific Research (KAKENHI)
- JSPS Fellows: 395
- Research Activity Start-up: 65
- Exploratory Research: 409
- Young Scientists: 98
- Research Activity Start-up: 65
- JSPS Fellows: 395
- Total: 2,916

Revenue
- Long-Term Loan Revenue: 1,529
- University-Industry Cooperative Research Revenue: 22,120
- Donations for Research: 28,361
- Commissioned Research: 1,084
- Total: 30,380

Expenditure
- Facility Maintenance Expenses: 20,662
- Grouped Research Expenses and Endowment Project Expenses: 22,120
- Long-Term Loan Redemption Expenses: 5,113
- Total: 153,526

Number of Students, Staff and Researchers

Number of Students (as of May 1, 2013)

Regular Students Total: 23,601
Non-Regular Students Total: 1,046
Total: 24,647

Number of Staff (as of May 1, 2013)

Full-Time Staff (total 6,155)
- Professor: 889
- Associate Professor: 847
- Assistant Professor: 227
- Research Staff: 1,138
- Special Research Staff: 152
- Academic Staff: 3,384
- Technical Staff: 320
- Medical Staff: 1,294
- Non-Academic Staff: 2,771

Part-Time Staff and Others (total 3,629)
- Academic Staff: 798
- Administrative Staff: 1,430
- Technical Staff: 422
- Medical Staff: 989
- Others: 42

Number of International Students (as of May 1, 2013)

Asia: 1,588
Europe: 297
Central and South America: 49
North America: 52
Middle East: 26
Oceania: 52
Total: 1,985

Number of Visiting International Researchers (FY2012)

Asia: 438
Europe: 196
North America: 67
Africa: 24
Middle East: 20
Oceania: 18
Central and South America: 14
Total: 777

Transition of Third-Party Funding (Past 10 years, in millions of Yen)

Transition of Grants-in-Aid for Scientific Research (KAKENHI) (Past 10 years)

Number of Students, Staff and Researchers

Number of Students (as of May 1, 2013)

Regular Students Total: 23,601
Non-Regular Students Total: 1,046
Total: 24,647

Number of Staff (as of May 1, 2013)

Full-Time Staff (total 6,155)
- Professor: 889
- Associate Professor: 847
- Assistant Professor: 227
- Research Staff: 1,138
- Special Research Staff: 152
- Academic Staff: 3,384
- Technical Staff: 320
- Medical Staff: 1,294
- Non-Academic Staff: 2,771

Part-Time Staff and Others (total 3,629)
- Academic Staff: 798
- Administrative Staff: 1,430
- Technical Staff: 422
- Medical Staff: 989
- Others: 42

Number of International Students (as of May 1, 2013)

Asia: 1,588
Europe: 297
Central and South America: 49
North America: 52
Middle East: 26
Oceania: 52
Total: 1,985

Number of Visiting International Researchers (FY2012)

Asia: 438
Europe: 196
North America: 67
Africa: 24
Middle East: 20
Oceania: 18
Central and South America: 14
Total: 777

Transition of Third-Party Funding (Past 10 years, in millions of Yen)

Transition of Grants-in-Aid for Scientific Research (KAKENHI) (Past 10 years)
Introduction of Osaka

Osaka, surrounded by Kyoto, Nara and Kobe, is located in the centre of Japan. Here, in this modernised, friendly and charming city with more than 1,800 years of history, old and new come together. In terms of transportation, Osaka is very conveniently positioned and, thanks to Kansai International and Itami airports, it can be easily accessed from both inside and outside of Japan. From Kyushu in the south to Tokyo in the north, the bullet train (Shinkansen) runs the length of Japan, stopping at Shin-Osaka Station. All other train and subway lines also run through Osaka Station.

We are looking forward to seeing you in Osaka!

Campus Locations and Transportation

1. Umeda Sky Building
2. Osaka Aqua-bus “AQUA-LINER”
3. Osaka Castle
4. Osaka City Central Public Hall
5. Dotombori
6. Shin-Osaka New World
7. Nintoku-ryo Tumulus
8. Abeno Harukas
9. Shitennoji Temple
10. Sumiyoshi-Taisha Grand Shrine

Published by: Osaka University
Edited by: International Affairs Division, Department of International Affairs
Editorial Cooperation and Printing: Yoshida Printing Inc.
Distributed by: International Affairs Division, Department of International Affairs Administration Bureau, Osaka University
1-1 Yamadaoka, Suita, Osaka 565-0871, JAPAN

© Osaka University 2014 (Published Annually)